Programmer's Manual

Producing Custom Software for Data Acquisition Systems

IOtech

25971 Cannon Road Cleveland, OH 44146-1833 Phone: (440) 439-4091 Fax: (440) 439-4093 E-mail (Product Information): sales@iotech.com E-mail (Technical Support): productsupport@iotech.com Internet: www.iotech.com

Programmer's Manual

Producing Custom Software for Data Acquisition Systems p/n 1008-0901 Rev. 10.4

372195A-01

Documents Related to Daq Products

Note: During software installation, Adobe[®] PDF versions of user's manuals will automatically install onto your hard drive as a part of product support. The default location is in the **Programs** group, which can be accessed from the *Windows Desktop*. Initial navigation is as follows:

Start [Desktop "Start" pull-down menu]

 \Rightarrow Programs

⇒ IOtech DaqX Software

You can also access the PDF documents directly from the data acquisition CD by using the **<View PDFs>** button located on the opening screen.

Refer to the PDF documentation for details regarding hardware and software pertinent to your data acquisition system.

A copy of the Adobe Acrobat Reader[®] is included on your CD. The Reader provides a means of reading and printing the PDF documents. Note that hardcopy versions of the manuals can be ordered from the factory.

How to use this Manual

This manual is for individuals who write their own programs. If you prefer to use existing *out-of-the box* software such as DaqView, ViewXL, DASYLab, SnapMaster, you do not need to read this manual.

This manual explains how to program data acquisition systems using various APIs. The programming languages used in the examples are C/C++ and Visual Basic. In addition to the information in this manual, you need to refer to your hardware user's manual. It may be helpful to read the DaqView user's manual to appreciate how a user-friendly data acquisition system looks from the user's point of view. You may also need to consult documentation pertaining to your specific computer system and programming environment.

In regard to this manual, you should read chapter 1, and then refer to additional chapters that are relevant to your programming environment.

The manual is organized as follows:

- 1. *Introduction* The manual begins with an overview of issues related to data acquisition programming and takes a look at the options available for making the task as easy as possible.
- 2. **API Programming General Models** discusses aspects of the data acquisition environment, provides several API models and a summary of selected API functions. The chapter includes a section entitled, *Seven Easy Steps to Data Acquisition*.
- 3. Using Multiple Devices
- 4. Daq API Command Reference

Appendix A – Appendix Removed. Outdated material.

Appendix B, Using Borland C++

- Appendix C, *Custom OEM Installation*, explains the procedures required for custom reseller hardware and driver installation and distribution.
- Appendix D, *daq9513... Commands*, this appendix only applies to DaqBook/100 Series, DaqBook/200 Series, DaqBoard/100 Series and DaqBoard/200 Series devices. The appendix includes an API programming model for 9513 counter-timer chip devices and includes API reference material for the daq9513... command prototypes.
 - **Note:** During software installation, Adobe[®] PDF versions of user manuals will automatically install onto your hard drive as a part of product support. The default location is in the **Programs** directory, which can be accessed from the *Windows Desktop*. Refer to the PDF documentation for details regarding both hardware and software.

A copy of the Adobe Acrobat Reader[®] is included on your CD. The Reader provides a means of reading and printing the PDF documents. Note that hardcopy versions of the manuals can be ordered from the factory.

Reference Note: The **readme.file** on your install CD-ROM identifies the location of program examples that are included on the CD.

This page is intentionally blank.

viii

Table of Contents

1-Introduction

API Features......1-1 Language Support.....1-2 Driver Installation.....1-2 A Note Regarding API Command Applicability1-3

2- API Programming - General Models

Data Acquisition Environment.....2-1 Application Programming Interface (API)2-1 Hardware Capabilities and Constraints.....2-1 Signal Environment.....2-2 Seven Easy Steps to Data Acquisition 2-2 Models

Initialization and Error Handling......2-9 One-Step Command Acquisitions2-11 Counted Acquisitions Using Linear Buffers....2-12 Indefinite Acquisition, Direct-To-Disk Using Circular Buffers......2-14 Analog Output......2-16 Generating DAC FIFO Waveforms2-18 Digital I/O on P2......2-19 Using DBK Card Calibration Files......2-20 Zero Compensation......2-23 Linear Conversion......2-25

3- Using Multiple Devices

Overview..... 3-1

Asynchronous Operation3-1 Synchronous Operation3-1

Asynchronous Operation of Multiple Devices 3-1

Synchronous Operation of Multiple

Devices3-3

Internal Clock Method..... 3-4 Master Clock Method..... 3-5 External Clock Method......3-7

Reference Note:

The **readme.file** on your install CD provides the location of program examples that are included on the CD.

4 - API Command Reference

Overview 4.1-1

Command Information Layout.....4.1-2 Predefined Parameter Definitions.....4.1-4

Mask and Flag Definitions.....4.1-6 Setting/Constructing Mask & Flag Values....4.1-6 Reading/Interpreting Mask & Flag Values....4.1-7

API Commands

Alphabetic Listing.....4.1-8 Grouped by Function.....4.1-9 The API Commands, In Detail.....4.1-13 **API Error Codes.....4.7-1**

Appendix A – Removed, Outdated Material

Appendix B – Using Borland C++

Appendix C – Custom OEM Installation

Appendix D – daq9513... Commands

Glossary

This page is intentionally blank.

х

API Features..... 1-1 Language Support..... 1-2 Driver Installation..... 1-2 A Note Regarding Devices and API Command Applicability 1-3

Reference Note:

Your companion user's manual discusses hardware installation and setup, theory of operation, troubleshooting, and ready-to-run software. If you plan to use DaqView software [shipped with Daq device products], or you plan to use other ready-to-run software such as DASYLab or SnapMaster, you will not need to use this manual.

Programmers can use the Applications Program Interface (API) to customize software. To create effective programs, programmers must be familiar with the hardware and operation as described in the previous chapters of this document.

Note: The *readme* files on the install CD-ROM will keep you up-to-date as APIs continue to evolve.

Note: Daq PCMCIA is not supported under Windows95/NT drivers.

This manual serves both novice and experienced programmers.

- As a tutorial The *Programming Models* chapter explains how to combine commands to do useful work in a typical data acquisition environment. Program excerpts illustrate concepts and can be modified as needed to use in your programs.
- As a reference A great portion of the manual pertains to API commands. API definitions and parameter values are important to ensure proper syntax, and that software functions perform as intended.

Reference Note:

This manual contains no computer programming tutorials. You may need to consult additional documentation.

API Features

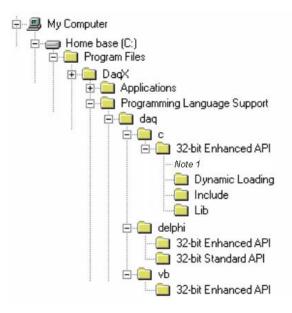
The install CD-ROM includes several "drivers" to accommodate various programming environments.

The API has several features:

- Multi-device can concurrently handle up to 4 devices of the Daq device family
- Larger buffer can handle up to 2 billion samples at a time
- Enhanced acquisition and trigger modes
- Direct-to-disk capabilities
- Wait-on-event features
- Uses multi-tasking advantages of Windows 95/98/Me/NT/2000/XP

Language Support

The following three languages are supported:


C/C++ Visual Basic

The *Programming Language Support* folder is located in your installation directory.

You can access program-related files from Windows Explorer.

If you used the install default directory setting, the support folder will be located under a program folder name (such as **DaqX**) under the **Program Files** folder on the **C: drive**. The figure below illustrates the *default install location* for your **C/C++** and **Visual Basic** (VB) programming language support.

In the illustration, the **32-Bit Enhanced API** folder (for C/C++ support) has been expanded to reveal its contents.

Default Install Locations for Programming Language Support

Note 1: In addition to folders labeled "Dynamic Loading," "Include," and "Lib," the 32-bit Enhanced API folder includes program examples for primary data acquisition units (main units) and for DBKs.

Driver Installation

Driver installation uses a 32-bit setup on a Windows 95/98/Me or Windows NT/2000/XP system. When run, the setup routine will automatically detect the correct operating system and will install the appropriate driver.

A Note Regarding Devices and API Command Applicability

API commands cannot be used universally with all products. For example, a command that pertains only to analog output is of no use to a device that does not support analog I/O, or to a device that supports analog input, but not analog output. Thus it is important that you understand the features and capabilities of your hardware before using API Commands. Prior awareness can save a great deal of programming time and avoid possible frustration.

One category of functionality that sometimes causes confusion is that of *waveform/pattern output*. The following table indicates which of the 4 types of waveform output apply to various product groups. Waveform output definitions follow the table.

Waveform/Pattern Output Device Capabilities				
Product *	Static Waveform	Dynamic Waveform	Waveform Output from Disk	Streamed Digital Pattern Output
DaqBoard/500 Series	Yes	No	No	No
DaqBoard/1000 Series	Yes	Yes	Yes	No
DaqBoard/2000 Series	Yes	Yes	Yes	Yes
DaqBook/2000 Series	Yes	No	No	No
DaqLab/2000 Series	Yes	No	No	No
DaqScan/2000 Series	Yes	No	No	No
/3000 Series Devices	Yes	Yes	Yes	Yes

* Not all devices in a series have static waveform output capability. The feature is only present for devices that have built-in DAC channel output circuitry, or if the device has a DBK46 option installed. Consult your specific hardware documentation for detailed information.

Static Waveform: Data is downloaded to the internal memory on the device and then played out from the device's internal memory. Once the waveform output is downloaded and initiated additional output updates from the PC cannot be performed. However the waveform can be played out indefinitely from the internal memory on the device.

Dynamic Waveform: Data is downloaded to the device and can be continuously updated by the PC while the waveform output is active. Updates to the output can come from PC memory or from a file.

Waveform Output from Disk: Uses dynamic waveform output to continuously update outputs from a file. The file is on a PC, which contains waveform output values, as defined by the user.

Streamed Digital Pattern Output: This output can be via P3 pins, BNC connectors, or SCSI III, depending on the device. The feature allows streaming continuous digital data to the device's 16-bit P3 digital port [or to designated BNC connectors, if applicable]. Data can be streamed from either PC memory or from a file. The rate at which streamed output is updated is dictated by the current DAC waveform output clock source. Digital data streaming can be performed by itself or in concert with analog waveform output generation.

Become familiar with your system components prior to writing a program. Know the capabilities of each device.

TIP: Prior to writing a program, review the product specifications [found in your device hardware manual]. The specifications often make it obvious as to which API Commands could not possibly apply. In addition, the programmer needs to be aware of specification limits when entering values.

Data Acquisition Environment.....2-1

Application Programming Interface (API)2-1 Hardware Capabilities and Constraints.....2-1 Signal Environment.....2-2 Seven Easy Steps to Data Acquisition2-2

Models

Initialization and Error Handling.....2-9 One-Step Command Acquisitions2-11 Counted Acquisitions Using Linear Buffers....2-12 Indefinite Acquisition, Direct-To-Disk Using Circular Buffers.....2-14 Analog Output.....2-16 Generating DAC FIFO Waveforms2-18 Digital I/O on P2.....2-19 Using DBK Card Calibration Files.....2-20 Zero Compensation......2-23 Linear Conversion......2-25

Reference Note:

Specific Daq Device and DBK program examples are included on the install CD. The install CD readme.file states the location of the examples.

This chapter shows how to combine API functions to perform typical tasks. Depending on your level of programming expertise, once you understand how the API works in conjunction with the hardware you can begin creating custom data acquisition programs.

This chapter is divided into two primary sections, as follows:

- **Data Acquisition Environment** outlines related concepts and defines Daq device capabilities the programmer must work with (the API, hardware features, and signal management).
- The **Models** section explains the sequence and type of operations necessary for data acquisition. Some models are provided in Visual Basic, while others appear in C/C++ code. These models provide the software building blocks to develop more complex and specialized programs.

Data Acquisition Environment

To write effective data acquisition software, programmers must understand:

- Software tools (the API documented in this manual and the programming language—you may need to consult documentation for your chosen language)
- Hardware capabilities and constraints
- General concepts of data acquisition and signal management

Application Programming Interface (API)

The API includes all the software functions needed for building a data acquisition system with the hardware described in this manual. The API Command Reference section of this manual includes details regarding how each function is used (parameters, hardware applicability, etc). In addition, you may need to consult your language and computer documentation.

Hardware Capabilities and Constraints

To program the system effectively, you must understand your Daq device and DBK hardware capabilities. Obviously you cannot program the hardware to perform beyond its design and specifications, but you also want to take full advantage of the system's power and features. In the User's Manual, you may need to refer to sections that describe your hardware's capability. In addition, you may need to consult your computer documentation. In some cases, you may need to verify the hardware setup, use of channels, and signal conditioning options (some hardware devices have jumpers and DIP switches that must match the programming, especially as the system evolves).

Signal Environment

Important data acquisition concepts *for programmers* are listed below and are discussed in your device user's manual.

- Channel Identification
- Scan Rates and Sequencing. With multiple scans, the time between scans becomes a parameter. This time can be a constant or can be dependent upon a trigger.
- Counter/Timer Operation
- **Triggering Options**. Triggering starts the A/D conversion. The trigger can be an external analog or TTL trigger, or a program controlled software trigger.

Parameters in the various A/D routines include: number of channels, number of scans, start of conversion triggering, timing between scans, and mode of data transfer. Up to 512 A/D channels can be sampled in a single scan. These channels can be consecutive or non-consecutive with the same or different gains. The scan sequence makes no distinction between local and expansion channels.

Seven Easy Steps to Data Acquisition

The sections that follow this one demonstrate various methods for designing and developing a data acquisition application. Though these models vary widely in their purpose and individually can seem quite complex most all employ a basic framework that is repeated elsewhere in other models. This section will discuss the basic framework required to develop a simple data acquisition application. The basic framework outlined here will be a re-occuring theme through most, if not all, the subsequent programming models.

Each data acquisition task can be broken down into the following basic elements:

- 1. Configuring Channels What Type of Channels? How Many?
- 2. Configuring Acquisition Events How Should the Acquisition Start and Stop?
- 3. Setting the Acquisition Rate How Fast Should the Channels be Scanned?
- 4. Setting up the Buffer Model How Should the Data be Stored?
- 5. Arming the Acquisition and Starting the Transfer
- 6. Triggering the Acquisition
- 7. Monitoring the Acquisition and Receiving Data

While this basic framework is not comprehensive, it does provide a basic model and a theory of operation from which to start developing your data acquisition application. Provided with each step is a description of the task and its general function, as well as representative code snippets from which an application can be developed and a table of related API functions which may be used to implement the step.

1. Configure Channels – What Type of Channels? How Many?

Every data acquisition has one or more channels from which data is to be acquired. The channels to be scanned comprise the channel scan configuration. Channels are added to the channel scan sequence in the order that they are programmed. Even if some channels are repeated in the channel scan sequence they are added to the channel scan sequence in the programmed location.

NOTE: Hereafter, the term *Channel Scan* (or *Scan*) refers to the entirety of the channel scan sequence configuration. In other words, a *Channel Scan* (*Scan*) is comprised of all the channels programmed into the channel scan sequence.

Here we are only configuring channels on the main unit. If configuring DBK expansion options each DBK channel needs to be programmed into the channel scan sequence. You may also need to set more specific channel configuration options. For this, refer to the sections regarding your specific DBK expansion card.

The following shows how to program the channel scan sequence.

```
DaqAdcGain gains[CHANCOUNT] = {DgainX1, DgainX2, DgainX8, DgainX4};
DWORD channels[CHANCOUNT] = {0,1,2,3};
DWORD flags[CHANCOUNT] = {DafAnalog|DafBipolar,DafAnalog|DafUnipolar,
DafAnalog|DafBipolar,DafAnalog|DafUnipolar};
```

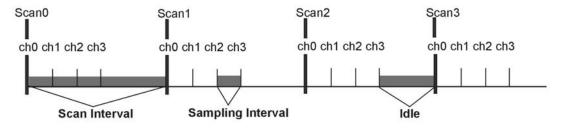
err = daqAdcSetScan(handle, channels, gains, flags,CHANCOUNT);

Related API's*	Description
DaqAdcSetScan	Performs basic channel scan sequence configuration, sets up channel scan information
DaqAdcSetMux	Same as daqAdcSetScan but sets all channels to the same configuration parameters
DaqAdcSetOption	Used to configure more complex configuration options for individual channels
DaqAdcExpSetBank	Used to setup channel banks/blocks for use with DBK expansion

*See the API Command Reference chapter for detailed information.

2. Configure Acquisition Events – How Should the Acquisition Start and Stop?

In this section we describe how to configure the Starting and Stopping Events for your acquisition. Each acquisition needs to have well defined Start and Stop Events. A Start Event can be as simple as start the acquisition immediately upon arming. An acquisition Stop Event can be as simple as Stop upon disarming the acquisition. The number and type of start and stop events is dependent upon the capabilities of the data acquisition device and vary from product to product. Acquisitions may also be defined with pre-trigger data. The amount of pre-trigger data can vary.


- err = daqAdcSetAcq(handle, DaamNShot, 0,SCANS);
- err = daqSetTriggerEvent(handle,DatsSoftware, NULL,NULL,NULL,NULL, DaqStartEvent);
- err = daqSetTriggerEvent(handle,DatsScanCount,NULL,NULL, NULL,NULL,NULL, DaqStopEvent);

Related API's*	Description	
daqAdcSetAcq	Configures acquisition modes as well as pre and post trigger scan counts	
daqSetTriggerEvent	Configures Start/Stop Trigger Events.	
daqAdcSetTrig	Used to configure Start Trigger Event	
daqAdcCalcTrig	Used to calculate Analog level in A/D counts for use in daqAdcSetTrig	

*See the API Command Reference chapter for detailed information.

3. Set the Acquisition Rate – How Fast Should Channels be Scanned?

In this section we describe how to configure the rate at which data is acquired for your acquisition. Here the acquisition rate refers to the rate at which channel scans are acquired. Depending upon which API is used the acquisition scan rate can be selected by either frequency or period/interval. Note that the rate being programmed is the rate at which the entire channel *scan* is paced. For all Daq devices the scan pacing can be derived from either an internal clock or an external clock driven by an input controlled by an external source. The between-channel sampling interval is normally a fixed interval depending upon the type of device used. Daq devices are normally fixed at 10us sampling interval. The between-channel sampling interval for /2000 Series devices is software selectable for either 5us or 10us.

err = daqAdcSetFreq(handle, 1000.0);

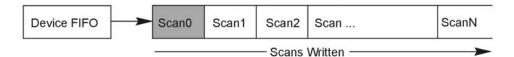
Related API's*	Description
daqAdcSetFreq	Sets the acquisition rate for both pre-trigger and post-trigger acquisitions in Hz based off of the internal pacer clock of the device
daqAdcGetFreq	Returns the current acquisition rate setting.
DaqAdcSetClockSource	Sets the acquisition base clock source to either the internal pacer or to an external clock source.
daqAdcSetRate	Allows setting pre and post-trigger scan rates in either period or frequency format (pre-trigger rate cannot be set for most Daq device products, for Daq device products pre-trigger rate will follow post-trigger rate). This command may also be used to return current pre-trigger and post-trigger rate settings.

*See the API Command Reference chapter for detailed information.

4. Setting up the Data Buffer Model – How Should the Data be Stored?

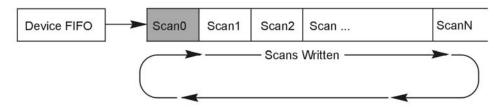
In this section we describe how to configure the buffer model to be used for the acquisition. There are two basic buffer models from which to choose; the User Buffer Model and the Driver Buffer Model.

The User Buffer Model allows the user or application to allocate a buffer and pass the information describing the location and disposition of the buffer down to the driver so that the driver can place collected data into the buffer. However, the User Buffer Model requires that the maintenance of the buffer and buffer pointers be performed by the user or application. When using the User Buffer Model the application can query the driver as to the total amount of data that has been transferred into the buffer but the user/application is responsible for maintaining and updating the current read and write pointers into the buffer. The User Buffer Model can employ either linear or circular buffers depending on the needs of the application.


The Driver Buffer Model the user/application to hand off responsibility of buffer management to the driver.

```
WORD buffer[SCANS * CHANCOUNT];
err = daqAdcTransferSetBuffer(handle, buffer,SCANS, DatmDriverBuffer);
```

User Buffer Model Operation


The User Buffer Model allows the user to specify either a linear buffer or circular buffer mode.

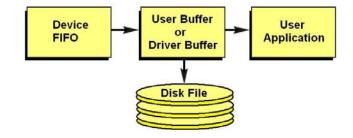
When the linear buffer mode is selected the driver will start filling the buffer from the beginning of the buffer with the newest available scans. Once the entire buffer has been filled to the number of scans specified the driver will stop writing scan data to the buffer even though the acquisition may continue.

In the User Buffer Linear mode the driver will stop writing data to the user buffer once the total number of scans requested has been satisfied. If the acquisition continues to run after this point scan data will accumulate in the device FIFO until another buffer (or the same buffer) transfer has been started or the device FIFO overruns. The implication of this is that when using linear buffers it is important to make sure that a buffer transfer remains active during the course of the acquisition or data loss may result. In other words, if the acquisition continues past the end of the specified buffer another transfer (into the same or a different buffer) must immediately be initiated. While it is possible to ping pong linear buffers in this manner it is not the recommended. Linear buffers should normally be used only when a predetermined number of scans are to be collected for the acquisition. In this case the buffer scan length should be set to to be the same size as the aggregate scan size [of the total acquisition]. For more information about starting transfers see Step 5.

The User Buffer Model also has a Circular Buffer Mode. In the circular buffer mode the driver will continue to write scan data into the User Buffer until the acquisition terminates on its own or is aborted by the user/application. Unlike the Linear Buffer model when the end of the user buffer is reached the driver will continue to write scan data starting at the beginning of the buffer.

When using the Circular Buffer mode the application does not need to make sure that there is always a buffer ready to take the scan data because the driver simply continues to fill the specified buffer and, when necessary, will begin writing data at the beginning of the buffer. This model ensures that a device FIFO overrun never occurs because the driver always has place to store the data (as long as the interface is capable of the required throughput). The application is required to monitor the transfer and remove and/or process data as it becomes available (See Step 7 on monitoring and receiving scan data). However a User Buffer overrun may occur if the controlling application cannot keep up in processing or removing the data from the buffer. Therefore the application should allocate a large enough buffer to alleviate any processing or other latencies that may be present in the system or the application. If making the buffer larger does not alleviate user buffer overrun problems then it may be necessary to upgrade the PC to a higher performance unit. The type of upgrade required will be highly dependent upon the nature of the application as well as operating environment in general. For instance, if taking data to disk then a faster HD and controller may be required. If mathematical manipulation of the data is taking place then a faster CPU may be in order. If graphics or video are used intensively then the solution may be a higher performance video card. It is important to remember that the application and other tasks within the system can have an impact on the overall performance of the data acquisition process.

Driver Buffer Model Operation


The Driver Buffer Model allows the flexibility of the User Buffer Model in Circular mode without the complication of having to manage the circular buffer at the application level. In fact, the Buffer Model is simply a special case of the circular buffer mode in that the driver handles the details of managing the circular buffer and "hands off" scan data to the application only when the application requests it. The scan data is handed off to the application in easy to use and manipulate linear buffers.

For more information on retrieving scan data from the Driver Buffer refer to Step 7, *Monitor the Acquisition and Receive the Data.*

Storing Data to Disk

Either buffer model allows the data to be streamed to a disk file in parallel to the transfer into the User or Driver Buffer. To enable this the daqAdcSetDiskFile function needs to be invoked before the acquisition is armed. When using this feature the scan data can be; appended to a current file, overwrite a current file or create a new file.

With either the User Buffer Model or the Driver Buffer Model the driver performs the transfer automatically. The format of the data in the disk file being written will be the same at it appears in the buffer. This will normally be raw scan data. No header or channel configuration information is stored in the raw data file.

Related API's*	Description
daqAdcTransferSetBuffer	Sets up the scan data buffer for the transfer. The buffer can be configured for either User Buffer or Driver Buffer modes. When User Buffer mode is selected the buffer can be set up to be either linear or circular in nature. The size of the scan data buffer (in scans) is also set here.
daqAdcSetDiskFile	Sets ups and enables taking the transfer scan data to a disk file.

*See the API Command Reference chapter for detailed information.

5. Arming the Acquisition and Starting the Transfer

Once the acquisition has been completely configured the acquisition can be armed. Arming the acquisition means that device will be configured according to the previous steps already outlined and the acquisition will taken from an "idle" to an "active" state. Once in the "active" state the acquisition may begin looking for the Trigger Event or begin collecting pre-trigger data (if pre-trigger has been configured). It is important to examine error return codes from the daqAdcArm command. The daqAdcArm command examines the entire configuration for any potential acquisition parameter conflicts.

```
err = daqAdcTransferStart(handle);
err = daqAdcArm(handle);
```

It is good practice to enable the transfer of data into the buffer first by calling daqAdcTransferStart command. This will ensure that a transfer is active and that the data buffer is ready to receive data so that when the acquisition is triggered the scan data can be immediately placed into the data buffer. Once the daqAdcArm command has been successfully invoked a trigger may occur at any time (obviously, once the trigger condition has been satisfied).

Related API's*	Description
daqAdcTransferStart	Enables scan data transfer into the buffer specified by the daqAdcTransferSetBuffer command.
daqAdcArm	Arms the acquisition. This command is a pivotal command around which the entire acquisition is configured. Once invoked this command not only arms the acquisition it configures the acquisition according to the acquisition configuration parameters set by prior commands. It is here where any potential configuration conflicts are flagged. Therefore it is important to check return codes from this command.

*See the API Command Reference chapter for detailed information.

6. Triggering the Acquisition

Once the acquisition has been armed it may be triggered at any time unless a pre-trigger data has been requested. If pre-trigger data has been requested the trigger event detection will be deferred until at least the specified amount of pre-trigger data has been collected. Any trigger event that occurs before the specified pre-trigger amount has been collected will be ignored. This deferring of the detection of the trigger event until the specified amount of pre-trigger data has been collected ensures that the acquisition will produce, at minimum, the requested pre-trigger amount.

The trigger event can be one of any valid trigger events for which the device is capable. For more information on which trigger events your device is capable of detecting please refer to the daqSetTriggerEvent command in the API definition.

Every device can be triggered via software:

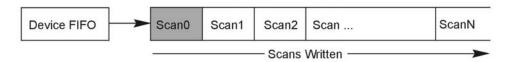
```
err = daqAdcSoftTrig(handle);
```

Related API's*	Description
daqAdcSoftTrig	Triggers the acquisition if software triggering is enabled.

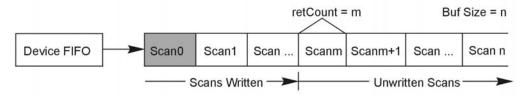
*See the API Command Reference chapter for detailed information.

7. Monitoring the Acquisition and Receiving Data

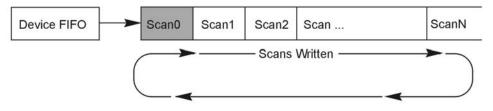
During the acquisition it may be necessary to monitor the progress of the acquisition and to collect the data and process it. The daqAdcTransferGetStat function returns a total transfer scan count as will as acquisition and transfer state information. Interpretation of the information returned greatly depends on the the buffer model selected as well as whether or not the buffer was set to linear or circular mode operation.


DWORD active, retCount;

DaqAdcTransferGetStat(handle,&active,&retCount);


The active parameter returns state information. The individual bits returned in this parameter indicate the current state of both the acquisition and the transfer. The retCount parameter returns a total running count of the amount of data transferred thus far. The following sections show how to interpret this data:

The User Buffer Model allows the user to specify either a linear buffer or circular buffer mode.


When the linear buffer mode is selected the driver will start filling the buffer from the beginning of the buffer of size n (scans) with the newest available scans. Once the entire buffer has been filled to the number of scans specified by n the driver will stop writing scan data to the buffer even though the acquisition may continue.

For monitoring progress into a linear User Buffer, the retCount parameter will return the current location (in scans) of the write pointer. This location indicates the next scan to be written as well as representing the total number of scans acquired thus far. For instance, if retCount = m then scan0 through scanm-1 can be processed.

The User Buffer Model also has a Circular Buffer Mode. In the circular buffer mode the driver will continue to write scan data into the User Buffer until the acquisition terminates on its own or is aborted by the user/application. Unlike the Linear Buffer model when the end of the user buffer is reached the driver will continue to write scan data starting at the beginning of the buffer.

When using the Circular Buffer mode the application does not need to make sure that there is always a buffer ready to take the scan data because the driver simply continues to fill the specified buffer and, when necessary, will begin writing data at the beginning of the buffer. This model ensures that a device FIFO overrun never occurs because the driver always has place to store the data (as long as the interface is capable of the required throughput).

The application is required to monitor the transfer and remove and/or process data as it becomes available (See Step 7 on monitoring and receiving scan data). However a User Buffer overrun may occur if the controlling application cannot keep up in processing or removing the data from the buffer. Therefore the application should allocate a large enough buffer to alleviate any processing or other latencies that may be present in the system or the application.

If making the buffer larger does not alleviate user buffer overrun problems then it may be necessary to upgrade the PC to a higher performance unit. The type of upgrade required will be highly dependent upon the nature of the application as well as operating environment in general. For instance, if taking data to disk then a faster HD and controller may be required.

If mathematical manipulation of the data is taking place then a faster CPU may be in order. If graphics or video are used intensively then the solution may be a higher performance video card. It is important to remember that the application and other tasks within the system can have an impact on the overall performance of the data acquisition process.

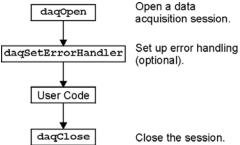
Monitoring and Receiving Driver Buffer Model Data

The Driver Buffer Model allows the flexibility of the User Buffer Model in Circular mode without the complication of having to manage the circular buffer at the application level. In fact, the Buffer Model is simply a special case of the circular buffer mode in that the driver handles the details of managing the circular buffer and "hands off" scan data to the application only when the application requests it. The scan data is handed off to the application in easy to use and manipulate linear buffers. Once handed off the data is removed from the Driver Buffer permanently. In other words requesting data from the Driver Buffer is a destructive read operation.

Upon request the Driver Buffer Model allows the application to request data from the internal Driver Buffer as follows:

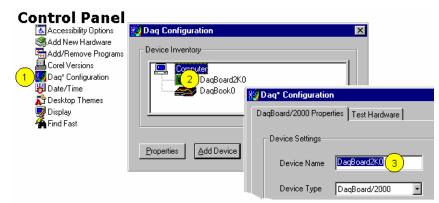
- Return Scan Data Available Returns any unread scan data that is available in the . Driver Buffer up to the requested amount. The application must ensure that it has enough space in the User Request Buffer to store any amount of unread scan data that may be present in the Driver Buffer up to the amount requested.
- Wait Until the Requested Amount is Available. Waits until the requested amount is available in the Driver Buffer. When the amount of scan data available is greater than or equal to the amount requested the Driver Buffer will return the amount requested.
- Do Not Wait Until the Requested Amount is Available Upon receipt of the request if the amount of scan data available in the Driver Buffer is not greater than or equal to the amount requested then the Driver Buffer will return no scan data. If the amount requested is available at the time of the request the driver buffer will return the amount requested.

Models


Initialization and Error Handling

This section demonstrates how to initialize the Dag device and use various methods of error handling. Most of the example programs use similar coding as detailed in the following VB example. Functions used include:

- VbdaqOpen&(daqName\$) •
- VbdaqSetErrorHandler&(errHandler&) •
- VbdaqClose&(handle&)


All Visual Basic programs should include the DaqX.bas file into their project. The DaqX.bas file provides the necessary definitions and function prototyping for the DAOX driver DLL.

> handle& = VBdaqOpen&("DaqBook0") ret& = VBdaqClose&(handle&)

Close the session.

The Daq device is opened and initialized with the daqOpen function. daqOpen takes one parameter the name of the device to be opened. The device name can be accessed and changed via the Daq* Configuration utility located in the operating system's Control Panel (see following figure).

Accessing and Changing a Device Name Using the Control Panel

To change a device name by going through the Control Panel you:

- (1) Go to the Control Panel and select "Daq* Configuration.
- (2) Double-Click on the applicable device.
- (3) Highlight the existing name and type in the new one. Then click the "OK" button, not shown.

The **daqOpen** call, if successful, will return a handle to the opened device. This handle may then be used by other functions to configure or perform other operations on the device. When operations with the device are complete, the device may then be closed using the **daqClose** function. If the device could not be found or opened, **daqOpen** will return -1.

The DAQX library has a default error handler defined upon loading. However; if it is desirable to change the error handler or to disable error handling, then the daqSetErrorHandler function may be used to setup an error handler for the driver. In the following example the error handler is set to 0 (no handler defined), which disables error handling.

```
ret& = VBdaqSetErrorHandler&(0&)
```

If there is a Daq device error, the program will continue. The function's return value (an error number or **0** if no error) can help you debug a program.

Daq device functions return daqErrno&.

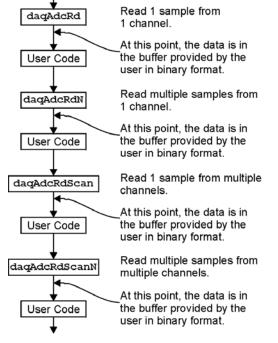
```
Print "daqErrno& : "; HEX$(daqErrno&)
End If
```

The next statement defines an error handling routine that frees us from checking the return value of every Daq device function call. Although not necessary, this sample program transfers program control to a userdefined routine when an error is detected. Without a Daq device error handler, Visual Basic will receive and handle the error, post it on the screen and terminate the program. Visual Basic provides an integer variable (ERR) that contains the most recent error code. This variable can be used to detect the error source and take the appropriate action.

The function dagSetErrorHandler tells Visual Basic to assign ERR to a specific value when a Daq device error is encountered. The following line tells Visual Basic to set ERR to 100 when a Daq device error is encountered. (Other languages work similarly; refer to specific language documentation as needed.)

```
handle& = VBdaqOpen&("DaqBook0")
ret& = VBdaqSetErrorHandler&(handle&, 100)
On Error GoTo ErrorHandler
```

The On Error Goto command (in Visual Basic) allows a user-defined error handler to be provided, rather than the standard error handler that Visual Basic uses automatically. The program uses On Error Goto to transfer program control to the label ErrorHandler if an error is encountered.


Daq device errors will send the program into the error handling routine. This is the error handler. Program control is sent here on error.

```
ErrorHandler:
    errorString$ = "ERROR in ADC1"
    errorString$ = errorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
    If Err = 100 Then errorString$ = errorString$ & Chr(10) & "DaqBook Error
    : " + Hex$(daqErrno&)
    MsgBox errorString$, , "Error!"
End Sub
```

One-Step Command Acquisitions

This section shows the use of several one-step analog input routines. These commands are easier to use than low-level commands but are less flexible in regard to scan configuration. These commands provide a single function call to configure and acquire analog input data. This example demonstrates the use of the 4 Daq device's one-step ADC functions. Functions used include:

- VBdaqAdcRd&(handle&,chan&, sample%, gain&)
- VBdaqAdcRdN&(handle&,chan&, Buf%(), count&, trigger%, level%, freq!, gain&,flags&)
- VBdaqAdcRdScan&(handle&,startChan&, endChan&, Buf%(), gain&, flags&)
- VBdaqAdcRdScanN&(handle&,startChan& , endChan&, Buf%(), count&, triggerSource&, level%, freq!, gain&, flags&)

This program will initialize the Daq device hardware, then take readings from the analog input channels in the base unit (not the expansion cards). For transporting data in and out of the Daq device driver, arrays are dimensioned.

Dim sample%(1), buf%(80), handle&, ret&, flags&, gain&

The following code assumes that the Daq device has been successfully opened and the handle& value is a valid handle to the device. All the following one-step functions define the channel scan groups to be analog unipolar input channels. Specifying this configuration uses the DafAnalog and the DafUnipolar values in the flags parameter. The flags parameter is a bit-mask field in which each bit specifies the characteristics of the channel(s) specified. In this case, the DafAnalog and the DafUnipolar values are added together to form the appropriate bit mask for the specified flags parameter.

The next line requests 1 reading from 1 channel with a gain of $\times 1$. The variable **DgainX1&** is actually a defined constant from DaqX.bas, included at the beginning of this program.

Note: DafSigned does not work in conjunction with DaqBook/100.

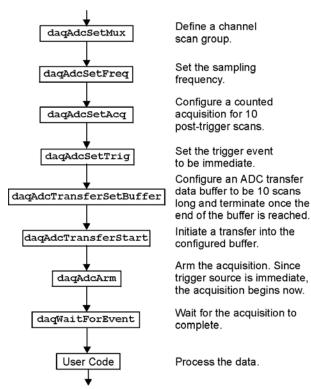
```
ret& = VBdaqAdcRd&(handle& 0, sample%(0), DgainX1&,
DafAnalog&+DafUnipolar&+DafSigned&)
Print Format$"& ####"; "Result of AdcRd:"; sample%(0)
```

The next line requests 10 readings from channel 0 at a gain of $\times 1$, using immediate triggering at 1 kHz.

```
ret& = VBdaqAdcRdN&(handle&,0, buf%(), 10, DatsImmediate&, 0, 1000!,
DgainX1&, DafAnalog&+DafUnipolar&)
Print "Results of AdcRdN: ";
For x& = 0 To 9
Print Format$ "#### "; buf%(x&);
Next x&
```

The program will then collect one sample of channels 0 through 7 using the VBdaqAdcRdScan function.

```
ret& = VBdaqAdcRdScan&(handle&,0, 7, buf%(), DgainX1&,
DafAnalog&+DafUnipolar&)
Print "Results of AdcRdscan:"
For x& = 0 To 7
Print Format$"& # & ####"; "Channel:"; buf%(x); "Data:"; buf%(x)
Next x&: Print
```


Counted Acquisitions Using Linear Buffers

This section sets up an acquisition that collects post-trigger A/D scans. This particular example demonstrates the setting up and collection of a fixed-length A/D acquisition in a linear buffer.

First, the acquisition is configured by setting up the channel scan group configuration, the acquisition frequency, the acquisition trigger and the acquisition mode. When configured, the acquisition is then armed by calling the **daqAdcArm** function.

At this point, the Daq device trigger is armed and A/D acquisition will begin upon trigger detection. If the trigger source has been configured to be DatsImmediate&, A/D data collection will begin immediately.

This example will retrieve 10 samples from channels 0 through 7, triggered immediately with a 1000 Hz sampling frequency and unity gain. Functions used include:

VBdaqAdcSetMux&(handle&, startChan&, endChan&, gain&, flags&)

- VBdaqAdcSetFreq&(handle&,freq!)
- VBdaqAdcSetTrig&(handle&, triggerSource&, rising&, level%, hysteresis%,channel&)
- VBdaqAdcSetAcq&(handle&,mode&,preTrigCount&,postTrigCount&)
- VBdaqAdcTransferSetBuffer&(handle&,buf%(), scanCount&, transferMask&)
- VBdaqAdcTransferStart&(handle&)
- VBdaqAdcWaitForEvent&(handle&,daqEvent&)

This program will initialize the Daq device hardware, then take readings from the analog input channels in the base unit (not the expansion cards). The functions used in this program are of a lower level than those used in the previous section and provide more flexibility.

Dim buf%(80), handle&, ret&, flags&

The following function defines the channel scan group. The function specifies a channel scan group from channel 0 through 7 with all channels being analog unipolar input channels with a gain of ×1. Specifying this configuration uses DgainX1 in the gain parameter and the DafAnalog and the DafUnipolar values in the flags parameter. The flags parameter is a bit-mask field in which each bit specifies the characteristics of the specified channel(s). In this case, the DafAnalog and the DafUnipolar values are added together to form the appropriate bit mask for the specified flags parameter.

```
ret& = VBdaqAdcSetMux&(handle&,0, 7, DgainX1&, DafAnalog&+DafUnipolar&)
```

•

Next, set the internal sample rate to 1 kHz.

ret& = VBdaqAdcSetFreq&(handle&,1000!)

The acquisition mode needs to be configured to be fixed length acquisition with no pre-trigger scan data and 10 scans of post-trigger scan data. The mode is set to **DaamNShot**, which will configure the acquisition as a fixed-length acquisition that will terminate automatically upon the satisfaction of the post-trigger count of 10.

```
ret& = VBdaqAdcSetAcq&(handle&,DaamNShot&, 0, 10)
```

The acquisition begins upon detection of the trigger event. The trigger event is configured with daqAdcSetTrig. The next line defines the trigger event (to be the immediate trigger source) that will start the acquisition immediately. The variable DatsImmediate& is a constant defined in DaqX.bas. Since the trigger source is configured as immediate, the other trigger parameters are not needed.

```
ret& = VBdaqAdcSetTrig&(handle&,DatsImmediate&, 0, 0, 0, 0)
```

A buffer now is configured to hold the A/D data to be acquired. Since this is to be a fixed length transfer to a linear buffer, the buffer cycle mode should be turned off with DatmCycleOff&. For efficiency, block update mode is specified with DatmUpdateBlock&. The buffer size is set to 10 scans.

Note: the user-defined buffer must have been allocated with sufficient storage to hold the entire transfer prior to invoking the following line.

```
ret& = VBdaqAdcTransferSetBuffer&(handle&,buf%(), 10,
DatmUpDateBlock&+DatmCycleOff&)
```

With all acquisition parameters being configured, the acquisition can now be armed. Once armed, the acquisition will begin immediately upon detection of the trigger event. As in the case of the immediate trigger, the acquisition will begin immediately upon execution of the daqAdcArm function.

```
ret& = VBdaqAdcArm&(handle&)
```

After setting up and arming the acquisition, the data is immediately ready to be collected. Had the trigger source been anything other than immediate, the data would only be ready after the trigger had been satisfied. The following line initiates an A/D transfer from the Daq device to the defined user buffer.

```
ret& = VBdaqAdcTransferStart&(handle&)
```

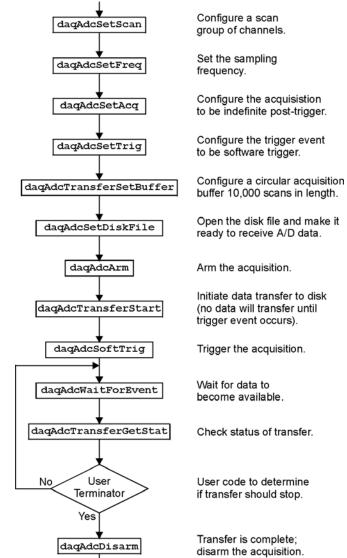
Wait for the transfer to complete in its entirety, then proceed with normal application processing. This can be accomplished with the dagWaitForEvent command. The dagWaitForEvent allows the application processing to become blocked until the specified event has occurred. DteAdcDone, indicates that the event to wait for is the completion of the transfer.

ret& = VBdaqWaitForEvent(handle&,DteAdcDone&)

At this point, the transfer is complete; all data from the acquisition is available for further processing.

```
Print "Results of Transfer"
For i& = 0 To 10
    Print "Scan "; Format$(Str$(i& + 1), "00"); " -->";
    For k& = k& To k& + 7
        Print Format$(IntToUint&(buf%(k&)), "00000"); " ";
    Next k&
    Print
Next i&
```

Indefinite Acquisition, Direct-To-Disk Using Circular Buffers


This program demonstrates the use of circular buffers in cycle mode to collect analog input data directly to disk. In cycle mode, this data transfer can continue indefinitely. When the transfer reaches the end of the physical data array, it will reset its array pointer back to the beginning of the array and continue writing data to it. Thus, the allocated buffer can be used repeatedly like a FIFO buffer.

The API has built-in direct-to-disk functionality. Therefore, very little needs to be done by the application to configure direct-to-disk operations.

First, the acquisition is configured by setting up the channel scan group configuration, the acquisition frequency, the acquisition trigger and the acquisition mode. Once configured, the transfer to disk is set up and the acquisition is then armed by calling the daqAdcArm function.

At this point, the Daq device trigger is armed and A/D acquisition to disk will begin immediately upon trigger detection.

This example will retrieve an indefinite amount of scans for channels 0 through 7, triggered via software with a 3000 Hz sampling frequency and unity gain. Functions used include:

- VBdaqAdcSetScan&(handle&, startChan&, endChan&, gain&, flags&)
- VBdaqAdcSetFreq&(handle&,freq!)
- VBdaqAdcSetTrig&(handle&, triggerSource&, rising&, level%, hysteresis%,channel&)
- VBdaqAdcSetAcq&(handle&,mode&,preTrigCount&,postTrigCount&)
- VBdaqAdcTransferSetBuffer&(handle&,buf%(), scanCount&, transferMask&)
- VBdaqAdcTransferStart&(handle&)
- VBdaqAdcTransferGetStat&(handle&,status&,retCount&)
- VBdaqAdcWaitForEvent&(handle&,daqEvent&)
- VBdaqAdcSetDiskFile&(handle&,filename\$,openMode&,preWrite&)

This program will initialize the Daq device hardware, then take readings from the analog input channels in the base unit (not the expansion cards) and store them to disk automatically. The following lines demonstrate channel scan group configuration using the daqAdcSetScan command.

Note: flags may be channel-specific.

Next, set the internal sample rate to 3 kHz.

```
ret& = VBdaqAdcSetFreq&(handle&,3000!)
```

The acquisition mode needs to be configured to be fixed-length acquisition with no pre-trigger scan data and 10 scans of post-trigger scan data. The mode is set to **DaamInfinitePost&**, which will configure the acquisition as having indefinite length and, as such, will be terminated by the application. In this mode, the pre- and post-trigger count values are ignored.

```
ret& = VBdaqAdcSetAcq&(handle&,DaamInfinitePost&, 0, 0)
```

The acquisition begins upon detection of the trigger event. The trigger event is configured with daqAdcSetTrig. The next line defines the trigger event to be the immediate trigger source which will start the acquisition immediately. The variable DatsSoftware& is a constant defined in DaqX.bas. Since the trigger source is configured as immediate, the other trigger parameters are not needed.

```
ret& = VBdaqAdcSetTrig&(handle&,DatsSoftware&, 0, 0, 0, 0)
```

A buffer now is configured to hold the A/D data to be acquired. This buffer is necessary to hold incoming A/D data while it is being prepared for disk I/O. Since this is to be an indefinite-length transfer to a circular buffer, the buffer cycle mode should be turned on with DatmCycleOn&. For efficiency, block update mode is specified with DatmUpdateBlock&. The buffer size is set to 10,000 scans. The buffer size indicates only the size of the circular buffer, not the total number of scans to be taken.

```
ret& = VBdaqAdcTransferSetBuffer&(handle&,buf%(), bufsize&,
DatmUpDateBlock&+DatmCycleOn&)
```

Now the destination disk file is configured and opened. For this example, the disk file is a new file to be created by the driver. After the following line has been executed, the specified file will be opened and ready to accept data.

```
ret& = VBdaqAdcSetDiskFile&(handle&,"c:dasqdata.bin", DaomCreateFile&, 0)
```

With all acquisition parameters being configured and the acquisition transfer to disk configured, the acquisition can now be armed. Once armed, the acquisition will begin immediately upon detection of the trigger event. As in the case of the immediate trigger, the acquisition will begin immediately upon execution of the daqAdcArm function.

ret& = VBdaqAdcArm&(handle&)

After setting up and arming the acquisition, data collection will begin upon satisfaction of the trigger event. Since the trigger source is software, the trigger event will not take place until the application issues the software trigger event. To prepare for the trigger event, the following line initiates an A/D transfer from the Daq device to the defined user buffer and, subsequently, to the specified disk file. No data is transferred at this point, however.

ret& = VBdaqAdcTransferStart&(handle&)

The transfer has been initiated, but no data will be transferred until the trigger event occurs. The following line will signal the software trigger event to the driver; then A/D input data will be transferred to the specified disk file as it is being collected.

```
ret& = VBdaqAdcSoftTrig&(handle&)
```

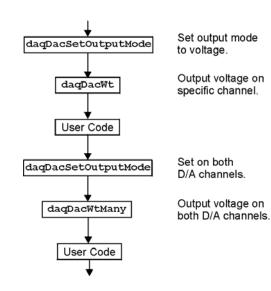
Both the acquisition and the transfer are now currently active. The transfer to disk will continue indefinitely until terminated by the application. The application can monitor the transfer process with the following lines of code:

Loop While acqTermination& = 0

At this point the application is ready to terminate the acquisition to disk. The following line will terminate the acquisition to disk and will close the disk file.

ret& = VBdaqAdcDisarm&(handle&)

The acquisition as well as the data transfer has been stopped. We should check status one more time to get the total number of scans actually transferred to disk.


```
ret& = VBdaqAdcTransferGetStat(handle&,active&,retCount&)
```

The specified disk file is now available. The **retCount&** parameter will indicate the total number of scans transferred to disk.

Analog Output

The program DACEX1.BAS shows how to output analog voltages on analog output channels 0 and 1. These commands only have to be issued one time unless a related parameter is explicity changed. The output voltages will be sustained. This example demonstrates the use of the two digital-toanalog converters (values used assume bipolar mode). Functions used include:

- VBdaqDacSetOutputMode&(ha ndle&, DddtLocal&, 0, DdomVoltage&)
- VBdaqDacWt&(handle&, deviceType&, chan&, dataVal%)
- VBdaqDacWtMany&(handle, deviceTypes&(),chans&(), dataVals&())

Assuming the voltage reference is connected to the internal default of 5 V, the next function will set channel 0 to an output voltage of 5 V. The values are set for a digital-to-analog converter with 16 bit resolution; 65535 represents full-scale. Channel 1 is equal to 0.

```
ret& = VBdaqDacSetOutputMode&(handle&, DddtLocal&, 0, DdomVoltage&)
ret& = VBdaqDacWt&(handle&, DddtLocal, 0, 65535)
```

The daqDacWtMany writes to both analog outputs simultaneously. The following lines sets channel 0 to 5 V and channel 1 to 2.5 V. At full-scale, a digital value of 65535 corresponds to 5 V; a digital value of 49152 corresponds to ½ of 5 V.

```
Dim deviceTypes&(1)
Dim chans&(1)
Dim dataVals%(1)
The VBdaqSetOutputMode puts the channel in a voltage mode.
ret& = VBdaqSetOutputMode&(handle&, DddtLocal&, 0, DdomVoltage&)
ret& = VBdaqSetOutputMode&(handle&, DddtLocal&, 1, DdomVoltage&)
deviceTypes&(0) = DddtLocal&
deviceTypes&(1) = DddtLocal&
chans&(0) = 0
chans&(1) = 1
dataVals&(0) = 65535
dataVals&(1) = 49152
ret& = VBdaqDacWtMany&(handle&, deviceTypes&(), chans&(), dataVals&(),2)
```


The following sets the outputs to 0 V.

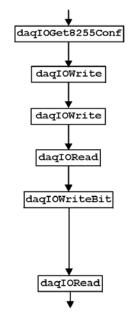
```
Dim deviceTypes&(1)
Dim chans&(1)
Dim dataVals%(1)
deviceTypes&(0) = DddtLocal&
deviceTypes&(1) = DddtLocal&
chans&(0) = 0
chans&(1) = 1
dataVals&(0) = 32768
dataVals&(1) = 32768
ret& = VBdaqDacSetOutputMode&(handle&, DddtLocal&, 0, DdomVoltage&)
ret& = VBdaqDacSetOutputMode&(handle&, DddtLocal&, 1, DdomVoltage&)
ret& = VBdaqDacWtMany&(handle&, deviceTypes&(), chans&(), dataVals&(),2)
```

Generating DAC FIFO Waveforms

This program demonstrates the use of the DAC FIFO to generate waveforms. The DAC is configured for output on both channels, and the user waveform is constructed. Output begins after the waveform is assigned to a channel. At this point, the program continues while the waveforms are generated.

The following example shows how to generate a pre-defined waveform using these functions:

- VBdaqDacWaveSetTrig&(handle&, deviceType&, chan&, triggerSource&, rising%)
- VBdaqDacWaveSetClockSource&(handle&, deviceType&, chan&, clockSource&)
- VBdaqDacWaveSetFreq&(handle&, deviceType&, chan&, freq!)
- VBdaqDacWaveSetMode&(handle&, deviceType&, chan&, mode&, updateCount&)
- VBdaqDacWaveSetBuffer&(handle&, deviceType&, chan&, buf%(), scanCount&, transferMask&)
- VBdaqDacWaveSetPredefWave&(handle&, deviceType&, chan&, waveType&, amplitude&, offset&, dutyCycle&, phaseShift&)
- VBdaqDacWaveArm&(ByVal handle&, ByVal deviceType&)


When using the pre-defined waveform generation, program the waveform parameters common to both channels. The double star (**) indicates the value must be the same on both channels of a DaqBoard.

```
For chan = 0 To 1 Step 1
 set the output mode to static waveform
ret& = VBdaqDacSetOutputMode&(handle&, DddtLocal&, chan&, DdomStaticWave&)
' The trigger source must be set to immediate for static waveform.**
err& = VBdaqDacWaveSetTrig&(handle&, DddtLocal&, chan&, DdtsImmediate&, 1)
' set the internal dac clock
ret& = VBdaqDacWaveSetClockSource&(handle&, DddtLocal&, chan&,
 DdcsDacClock&)
' the frequency of the internal clock. **
ret& = VBdaqDacWaveSetFreq&(handle&, DddtLocal&, chan&, 10!)
' must be infinite for static mode
ret& = VBdaqDacWaveSetMode&(handle&, DddtLocal&, chan&, DdwmInfinite&, 0)
Next chan
' buffer cylce on, retransmit mode. **
' update count is the buffer length. **
ret& = VBdaqDacWaveSetBuffer&(handle&, DddtLocal&, chan&, buf0%(),
 updateCount&, DdtmCycleOn&)
' set the buffer for channel 1
ret& = VBdaqDacWaveSetBuffer&(handle&, DddtLocal&, chan&, buf1%(),
 updateCount&, DdtmCycleOn&)
' program the waveform parameters specific to dac channel 0
ret& = VBdaqDacWaveSetPredefWave&(handle&, DddtLocal&, 0, DdwtTriangle&,
 32768, 32768, 90, 0)
' program the waveform parameters specific to dac channel 1
ret& = VBdaqDacWaveSetPredefWave&(handle&, DddtLocal&, 1, DdwtSquare&,
 32768, 32768, 40, 0)
' buffer must be configured before the arm command is called. All channels
' will be armed.
ret& = VBdaqDacWaveArm(handle&, DddtLocal&)
```

Digital I/O on P2

This program demonstrates the functions controlling digital I/O on the P2 connector of the device. First, the 3 digital ports on the 8255 are configured as input, output, or both in the case of port C; then, appropriate I/O commands are issued. Functions used include:

- VBdaqIOReadBit&(handle&, devType&, devPort&, whichDevice&, whichExpPort&, bitNum&, bitValue&)
- VBdaqIORead&(handle&, devType&, devPort&, whichDevice&, whichExpPort&, value&)
- VBdaqIOWriteBit&(handle&, devType&, devPort&, whichDevice&, whichExpPort&, bitNum&, bitValue&)
- VBdaqIOWrite&(handle&, devType&, devPort&, whichDevice&, whichExpPort&, value&)
- VBdaqIOGet8255Conf&(handle&, portA&, portB&, portCHigh&, portCLow&, config&)

Configure mode of ports A, B, & C on 8255 chip.

Set configuration.

Write to port A (use defined constant DdpLocalA).

Read from port B (use defined constant DdpLocalB).

Write to high nibble of port C (use defined constant DdpLocalCHigh) (repeat for each bit).

Read from low nibble of port C (use defined constant DdpLocalCLow) (repeat for each bit).

```
Dim config&, byteVal&, bitVal&, x%
Dim buf(10) As Byte, active&, retCount&
handle& = VBdaqOpen&("DaqBook0")
ret& = VBdaqSetErrorHandler&(handle&, 100)
On Error GoTo ErrorHandlerDIG1
ret& = VBdaqIOGet8255Conf&(handle&, 0, 1, 0, 1, config&)
```

The function daqIOGet8255Conf returns the appropriate configuration value to use in daqIOWrite. As shown above, the handle of the opened Daq device is the first parameter passed. The second, third, fourth, and fifth parameters respectively indicate: the 8255 port A value, the port B value, the high-nibble value of port C, and the low-nibble value of port C. The values for the parameters passed in the call shown above will return the configuration value (port A = OUTPUT, port B = INPUT, port C / high nibble = output, port C / low nibble = INPUT) in the config& parameter, which matches the current configuration of the 8255.

The daqIOWrite function writes the obtained configuration value to the selected port.

```
ret& = VBdaqIOWrite&(handle&, DiodtLocal8255&, Diodp8255IR&, 0, 0,_ config&)
```

Write hex 55 to port A on the Daq device's base unit.

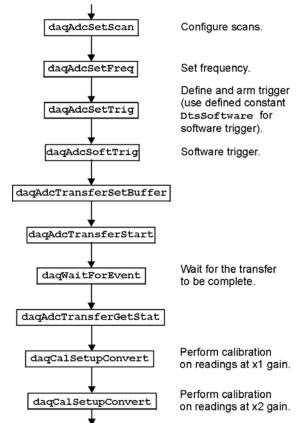
```
ret& = VBdaqIOWrite&(handle&, DiodtLocal8255&, Diodp8255A&, 0, 0,_ &H55)
```

Read port B and put the value into the variable byteVal%.

```
ret& = VBdaqIORead&(handle&, DiodtLocal8255&, Diodp8255B&, 0, 0,_ byteVal&)
Print "The value on digital port B : &H"; Hex$(byteVal&): Print
```

The following lines write to the high nibble of port C.

```
ret& = VBdaqIOWriteBit&(handle&,DiodtLocal8255&,Diodp8255CHigh&,0,_ 0,0,1)
ret& = VBdaqIOWriteBit&(handle&,DiodtLocal8255&,Diodp8255CHigh&,0,_ 0,1, 0)
ret& = VBdaqIOWriteBit&(handle&,DiodtLocal8255&,Diodp8255CHigh&,0,_ 0, 2, 1)
ret& = VBdaqIOWriteBit&(handle&,DiodtLocal8255&,Diodp8255CHigh&,0,_ 0, 3, 0)
Print "The high nibble of digital port C set to : 0101 (&H5)": Print
```


The next lines read the low nibble of port C on the base unit.

```
For x% = 0 To 3
ret& = VBdaqIOReadBit&(handle&, DiodtLocal8255&,_____ Diodp8255CLow&,
0, 0, x%, bitVal&)
Print "The value on bit "; x%; " of digital port C : &H";__ Hex$(bitVal&)
Next x%
```

Using DBK Card Calibration Files

Software calibration functions are designed to adjust Dag device readings to compensate for gain and offset errors. Calibration constants are calculated at the factory by measuring the gain and offset errors of a card at each programmable gain setting. These constants are stored in a calibration text file that can be read by a program at runtime. This allows new boards to be configured for calibration by updating this calibration file rather than recompiling the program. Calibration constants and instructions are shipped with the related DBK boards. Programs like DaqView support this calibration and use the same constants.

The calibration operation removes static gain and offset errors that are inherent in the hardware. The calibration constants are measured at the factory and do not change during the execution of a program. These constants are different for each card and programmable-gain setting; they may even be different for each channel, depending on the design of the expansion card.

Note: DBK19 is shipped with calibration constants. Other cards use on-board potentiometers to perform hardware calibration.

The calibration process has 3 steps:

- **Initialization** consists of reading the calibration file.
- Setup describes the characteristics of the data to be calibrated.
- **Conversion** does the actual calibration of the data.

[MAIN]
32760,32769
32801,32750
32740,32777
32810,32768
[EXP3]
32780,32779
32800,32756
32768,32780
32750,32742
[EXP5]
32752,32764
32783,32757
32749,32767
32777,32730

Function prototypes, return error codes, and parameter definitions are located in the DAQX.H header file for C (or similar files for other languages).

Cards that support the calibration functions are shipped with a diskette containing a calibration constants file. The name of the file will be the serial number of the card shipped with it. This file holds the calibration constants for each programmable-gain setting of that card. These constants should be copied to a calibration text file (DAQBOOK.CAL) located in the same directory as the program performing the calibration.

To set up the calibration file, perform the following steps:

- 1. Locate the diskette containing the calibration constants file.
- 2. Configure the card according to instructions found in the DBK documentation (included on your CD, or in hardcopy).
- 3. Edit the calibration file, DAQBOOK.CAL, using a text editor.
- 4. Add the card number information within brackets, as listed in the calibration file.
- 5. Add the calibration constants immediately after the card number. (These should be entered in the order given in the calibration file.)
- 6. Repeat steps 4 and 5 for each card.
- 7. Verify that no two cards are configured with the same card/channel number.

The table shows an example of a calibration file for configuring the main Daq device unit and two DBK19 cards connected to Daq device expansion channels 3 and 5.

The initialization function for reading in the calibration constants from the calibration text file is daqReadCalFile. The C language version of daqReadCalFile is similar to other languages and works as follows:

The filename with optional path information of the calibration file. If calfile is NULL or empty (""), the default calibration file DAQBOOK.CAL will be read. This function is usually called once at the beginning of a program and will read all the calibration constants from the specified file. If calibration constants for a specific channel number and gain setting are not contained in the file, ideal calibration constants will be used (essentially not calibrating that channel). If an error occurs while trying to open the calibration file, ideal calibration constants will be used for all channels and a non-zero error code will be returned by the dagReadCalFile function.

Once the calibration constants have been read from the cal file, they can be used by the daqCalSetup and daqCalConvert functions. The daqCalSetup function will configure the order and type of data to be calibrated. This function requires data to be from consecutive channels configured for the same gain, polarity, and channel type. The calibration can be configured to use only the gain calibration constant and not the offset constant. This allows the offset to be removed at runtime using the zero compensation functions described later in this section.

In this example, several Daq device channels will be read and calibrated. This example assumes the calibration file has been created according to the initializing calibration constants section of this chapter. Expansion cards can perform the same type of calibration if the calibration constants are available for the card and a specified channel number. First list the configuration:

Channel	Channel Type	
0	Voltage1 @ X1 gain	
1	Voltage2 @ X2 gain	
2	Voltage3 @ X2 gain	
3	Voltage4 @ X2 gain	

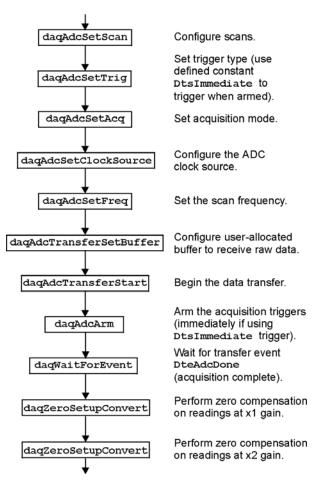
Now specify the scan (the sequence of channel numbers and gains that are to be gathered as one burst of readings). In this example, all the channels at each gain will be read together (in consecutive order) to make the calibration easier.

Scan Position	Channel Type	Channel	Gain Code
0	Voltage1 @ X1 gain	0	DgainX1
1	Voltage2 @ X2 gain	1	DgainX2
2	Voltage3 @ X2 gain	2	DgainX2
3	Voltage4 @ X2 gain	3	DgainX2

```
Dim chans&(4), gains&(4), buf%(20)
handle& = VBdagOpen&("DagBook0")
' Set array of channels and gains
chans\&(0) = 0
gains&(0) = DgainX1&
chans\&(1) = 1
gains\&(1) = DgainX2\&
chans\&(2) = 2
gains&(2) = DgainX2&
chans\&(3) = 3
gains&(3) = DgainX2&
' Load scan sequence FIFO :
ret& = VBdaqAdcSetScan&(handle&, chans&(), gains&(), 4)
' Set Clock
ret& = VBdaqAdcFreq&(handle&, 10)
' Define and arm trigger :
ret& = VBdaqAdcSetTrig&(handle&, DtsSoftware&, 0, 0, 0, 0)
' Trigger
ret& = VBdaqAdcSoftTrig&(handle&)
' Read the data

  5 indicates the number of scans

' single mode for scans less than 500
ret& = VBdaqAdcTransferSetBuffer&(handle&, buf%(), 5, DatmCycleOff& +
 DatmSingleMode&)
ret& = VBdaqAdcTransferStart&(handle&)
'specifies to wait for the transfer to be complete
ret& = VBdaqWaitForEvent&(handle&, DteAdcDone&)
ret& = VBdaqAdcTransferGetStat&(handle&, active&, retCount&)
' Print the first scan of unconverted data
PRINT "Before Calibration:"
PRINT "Channel 0 at x1 gain: "; buf%(0)
PRINT "Channel 1 at x2 gain: "; buf%(1)
PRINT "Channel 2 at x2 gain: "; buf%(2)
PRINT "Channel 3 at x2 gain: "; buf%(3)
'Perform zero compensation on readings sampled at x1 gain
ret& = VBdaqCalSetupConvert&(handle&, 4, 0, 1, 0, DgainX1&, 0, 1, 0, buf%(),
 5)
'Perform zero compensation on readings sampled at x2 gain
ret& = VBdaqCalSetupConvert&(handle&, 4, 1, 3, 0, DgainX2&, 1, 1, 0, buf%(),
 5)
' Print the first scan of converted data
PRINT "After Calibration:"
PRINT "Channel 0 at x1 gain: "; buf%(0)
PRINT "Channel 1 at x2 gain: "; buf%(1)
PRINT "Channel 2 at x2 gain: "; buf%(2)
PRINT "Channel 3 at x2 gain: "; buf%(3)
```


Now configure the Daq device with this information, and read 5 scans of data:

Zero Compensation

Zero compensation removes offset errors while a program is running. This is useful in systems where the offset of a channel may change due to temperature changes, long-term drift, or hardware calibration changes. Reading a shorted channel on the same card at the same gain as the desired channel removes the offset at run-time.

Note: Zero compensation is not available for all expansion cards. The DBK19 has channel 1 permanently shorted for zero compensation; other cards require a channel to be shorted manually.

The zero-compensation functions require a shorted channel and a number of other channels to be sampled from the same card at the same gain as the shorted channel. These functions will work with cards (such as the DBK12, DBK13, and DBK19) that have one analog path from the input to the A/D converter. Other cards do not support the zero compensation functions because they have offset errors unique to each channel. The DBK19 is designed with channel 1 already shorted for performing zero compensation.

The **daqZeroSetup** function configures the location of the shorted channel and the channels to be zeroed within a scan, the size of the scan, and the number of readings to zero compensate. (This function does not do the conversion.) A non-zero return value indicates an invalid parameter error.

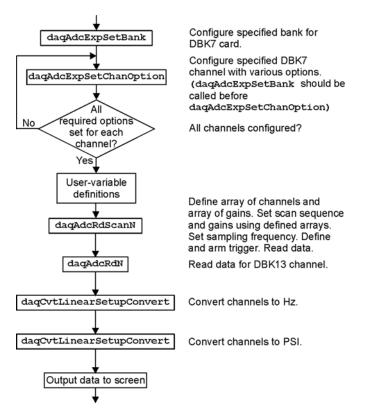
In this example, several Daq device channels will be read using various gains and zero-compensated to remove any offset errors. This example assumes that channel 0 of the Daq device has been manually shorted. Expansion cards could perform the same type of zero compensation as this example by shorting a channel on the expansion card and specifying card channel numbers. First list the configuration:

Channel	Channel Type	
0	Shorted Channel	
1	Voltage1 @ X1 gain	
2	Voltage2 @ X2 gain	
3	Voltage3 @ X2 gain	
4	Voltage4 @ X2 gain	

Now specify the scan, the sequence of channel numbers, and gains that are to be gathered as one burst of readings. In this example, we will first read the shorted channel at each gain that we plan on using, in this case $\times 1$ and $\times 2$. All the channels at each gain will be read together to make the actual zero compensation easier.

Scan Position	Channel Type	Channel	Gain Code
0	Shorted Channel @ X1	0	DgainX1
1	Shorted Channel @ X2	0	DgainX2
2	Voltage1 @ X1 gain	1	DgainX1
3	Voltage2 @ X2 gain	2	DgainX2
4	Voltage3 @ X2 gain	3	DgainX2
5	Voltage4 @ X2 gain	4	DgainX2

```
Public Sub ZeroComp()
' Performs zero compensation on ADCs readings
Const ScanLength& = 6 'Total channels per scan
Const ScanCount& = 5 'Number of scans to acquire
Dim chan&(ScanLength), gain&(ScanLength)
Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim ret&, daqHandle&
daqHandle& = VBdaqOpen&("daqbook0")
' Channel zero must be shorted to ground
' Use DafClearLSNibble flag to clear 4 least significant
' bits when using 12-bit A/D converters
chan&(0) = 0: gain&(0) = DgainX1&: flag&(0) = DafBipolar& +
 DafClearLSNibble&
chan&(1) = 0: gain&(1) = DgainX2&: flag&(1) = DafBipolar& +
 DafClearLSNibble&
chan&(2) = 1: gain&(2) = DgainX1&: flag&(2) = DafBipolar& +
 DafClearLSNibble&
chan&(3) = 2: gain&(3) = DgainX2&: flag&(3) = DafBipolar& +
 DafClearLSNibble&
chan&(4) = 3: gain&(4) = DgainX2&: flag&(4) = DafBipolar& +
 DafClearLSNibble&
chan&(5) = 4: gain&(5) = DgainX2&: flag&(5) = DafBipolar& +
 DafClearLSNibble&
ret& = VBdaqAdcSetScan&(daqHandle&, chan&(), gain&(), flag&(), ScanLength)
ret& = VBdaqAdcSetTrig&(daqHandle&, DatsImmediate&, 1, 0, 0, 0)
ret& = VBdaqAdcSetAcq&(daqHandle&, DaamNShot&, 0, ScanCount)
ret& = VBdaqAdcSetClockSource&(daqHandle&, DacsAdcClock&)
ret& = VBdaqAdcSetFreq&(daqHandle&, 100!)ret& =
 VBdaqAdcTransferSetBuffer&(daqHandle&, buf%(), ScanCount, DatmCycleOff& +
 DatmUpdateSingle&)
ret& = VBdaqAdcTransferStart&(daqHandle&)
ret& = VBdaqAdcArm&(daqHandle&)
ret& = VBdaqWaitForEvent&(daqHandle&, DteAdcDone&)
' Print the first scan of unconverted data
Print "Channel zero shorted to ground"
Print "Channel 0 at X1 gain: "; IntToUint(buf%(0))
Print "Channel 0 at X2 gain: "; IntToUint(buf%(1))
Print
Print "Before zero compensation"
Print "Channel 1 at X1 gain: "; IntToUint(buf%(2))
Print "Channel 2 at X2 gain: "; IntToUint(buf%(3))
Print "Channel 3 at X2 gain: "; IntToUint(buf%(4))
Print "Channel 4 at X2 gain: "; IntToUint(buf%(5))
Print
' Perform zero compensation on readings sampled at x1 gain.
' 1 reading at position 2. Zero reading at position 0.
ret& = VBdaqZeroSetupConvert&(ScanLength, 0, 2, 1, buf%(), ScanCount)
' Perform zero compensation on readings sampled at x2 gain.
' 3 readings at position 3. Zero reading at position 1.
ret& = VBdaqZeroSetupConvert&(ScanLength, 1, 3, 3, buf%(), ScanCount)
' Print the first scan of converted data
Print "After zero compensation"
Print "Channel 1 at X1 gain: "; IntToUint(buf%(2))
Print "Channel 2 at X2 gain: "; IntToUint(buf%(3))
Print "Channel 3 at X2 gain: "; IntToUint(buf%(4))
Print "Channel 4 at X2 gain: "; IntToUint(buf%(5))
Print
' Close the device
ret& = VBdaqClose&(daqHandle&)
End Sub
Function IntToUint(intval As Integer) As Long
' Converts 16-bit signed integer to unsigned long integer
If 0 <= intval Then
```


```
IntToUint = intval
Else
IntToUint = 65535 + CLng(intval) + 1
End If
End Function
```

Linear Conversion

Several DBKs use conversions from A/D readings to corresponding values that are a linear (straight-line) relationship. (Non-linear relationships for RTDs and thermocouples require special conversion functions—refer to the Thermocouple and RTD Linearization section later in this chapter.) The linear conversion functions are built into the API.

Six parameters are used to specify a linear relationship: the A/D input range (minimum and maximum values), and the transducer input signal level and output voltage at two points in the range.

Three functions are used to perform linear conversions: daqCvtLinearSetup, daqCvtLinearConvert, and daqCvtLinearSetupConvert. These functions are defined in the following pages. After their definitions, parameter examples and a program example show how they work.

DBK7, programmed for 50 to 60 Hz:

Measurement	Signal	Voltage
1	50 Hz	-5 V
2	60 Hz	+5 V

The DBK7 output range is from -5 V to +5 V, and the Daq device must be configured for bipolar operation at a gain of $\times 1$ for the DBK7 channels. Thus, the input range -5 V to +5 V corresponds to the **ADmin** and **ADmax** settings. When a DBK7 programmed for a 50 to 60 Hz range measures a 50 Hz input signal, it outputs -5 V. With a 60 Hz input signal, it outputs +5 V. Thus, **signal1** is 50, **voltage1** is -5, **signal2** is 60, and **voltage2** is 5.

Pressure-transducer:

Measurement	Signal	Voltage
1	0 psi	1 mV
2	1000 psi	4 mV

Assume that a pressure transducer outputs 1 to 4 mV to represent 0 to 1000 psi, and that a DBK13 with a gain of $\times 1000$ is used with a Daq device in bipolar mode to measure the signal. In bipolar mode, at a gain of 1000, the analog signal input range is -5 to 5 mV and the output range from the DBK13 is -5 to 5 Volts. Thus, **ADmin** is -5.000, and **ADmax** is 5.000. A pressure of 0 psi generates an output of 1 mV, and 1000 psi generates 4 mV. Thus **signal1** is 0, **voltage1** is 1.000, **signal2** is 1000 and **voltage2** is 4.000.

This program uses the linear conversion functions to convert voltage readings from a DBK7 frequency-tovoltage card and a DBK13 voltage input card with a pressure transducer to actual frequencies (Hz) and pressures (psi).

```
Public Sub LinearConvert()
Dim buffer1%(80), buffer2%(80), flags&(3), hz!(20), psi!(10)
Dim ret&, handle&, chan&, x%
' Initialize DaqBook
handle& = VBdagOpen&("DagBook0")
'Set Channel 16 to be a DBK7. This will configure and auto-
'calibrate all channels on the DBK7 which includes channels
'16,17,18, and 19. This step not required for a DBK13
ret& = VBdaqAdcExpSetBank(handle&, 16, DbankDbk7&)
'Set channel option common to all DBK7 channels.
'This step not required by a DBK13.
For chan\& = 16 To 19
  ret& = VBdaqAdcExpSetChanOption(handle&, chan&, DcotDbk7Slope&, 1)
   ret& = VBdaqAdcExpSetChanOption(handle&, chan&, DcotDbk7DebounceTime&,
 DcovDbk7DebounceNone&)
   ret& = VBdaqAdcExpSetChanOption(handle&, chan&, DcotDbk7MinFreq&, 50!)
  ret& = VBdaqAdcExpSetChanOption(handle&, chan&, DcotDbk7MaxFreq&, 60!)
Next chan&
'Channel configuration:
'DaqBook Channels 16, 17: DBK7 channels 0,1
'DaqBook Channel 32: DBK13 channel 0
'Configure the pacer clock, arm the trigger, and acquire 10
'scans. The gain setting of Dbk7X1 (X1 gain) will be applied
'to all channels. The acquisition frequency is set to 100 Hz.
'All channels are unsigned - bipolar.
ret& = VBdaqAdcRdScanN&(handle&, 16, 17, buffer1%(), 10, DatsAdcClock&, 0,
 0, 100!, Dbk7X1&, DafUnsigned& + DafBipolar&)
'Now do the same for the DBK13 channel, using gain Dbk13X1000
ret& = VBdaqAdcRdN(handle, 32, buffer2%(), 10, DatsAdcClock&, 0, 0, 100!,
 Dbk13X1000&, DafUnsigned& + DafUnipolar&)
'Convert channels 16 and 17 to Hertz where -5 volts corresponds
'to 50 Hz and 5 volts corresponds to 60 Hz.
ret& = VBdaqCvtLinearSetupConvert(2, 0, 2, 50!, -5!, 60!, 5!, 1, buffer1%(),
 10, hz!(), 20)
'Convert channel 32 to PSI where 1mV corresponds to 0 PSI and
'4 mV corresponds to 1000 PSI. DBK13 channel 0 has 1000x gain,
'so 1mV at Dbk13 input gives 1V output at DaqBook input.
ret& = VBdaqCvtLinearSetupConvert(1, 0, 1, 0!, 1!, 1000!, 4!, 1, buffer2%(),
 10, psi!(), 10)
'Print results
Print "Results:"
For x = 0 To 9
   Print Format(hz!(x * 2), "#0.00 Hz "); Format(hz!(x * 2 + 1), "#0.00 Hz
 "); Format(psi(x), "0000.0 psi")
Next x
ret& = VBdagClose(handle&)
```

```
End Sub
```

Overview..... 3-1

Asynchronous Operation3-1 Synchronous Operation3-1

Asynchronous Operation of Multiple Devices 3-1

Synchronous Operation of Multiple Devices3-3 Internal Clock Method...... 3-4

Master Clock Method...... 3-5 External Clock Method......3-7

Overview

This chapter applies to all devices that can be used with the DaqX API. The purpose of this chapter is to show how devices can be used concurrently in either a synchronous or asynchronous fashion. Devices that have the ability to trigger from an external source or be clocked by an external source have the ability to be used in a synchronized system.

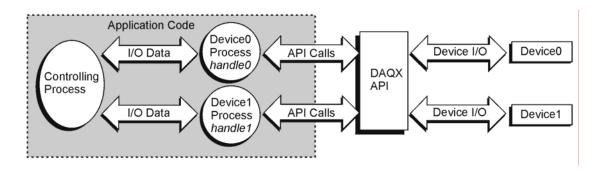
Asynchronous Operation

Asynchronous operation of devices is defined as the inability to synchronize the input of data between separate main unit devices. Data acquired with the devices is independent and the time-skew between devices is non-deterministic.

In the following sections, both synchronous and asynchronous operation will be covered. However, since synchronous operation requires more care in configuration most of the remaining material in the chapter will cover synchronous operation of multiple devices.

For either synchronous or asynchronous operation modes device configuration and data handling is very similar to the single device scenario. The DaqX API is a handle based API. This means that each device session has a handle assigned to it when it is opened. This device handle is then used to configure and acquire data from a device by referencing the device handle when calling the appropriate DaqX API functions.

Synchronous Operation


Synchronous operation of devices is defined as having the ability to synchronize the input of data between separate main unit devices. Data between devices is not time-skewed or the time-skew between devices is deterministic.

Asynchronous Operation of Multiple Devices

All DaqX compatible devices may be run concurrently in an asynchronous manner. When using the devices concurrently in an asynchronous manner the programming and data collection techniques are very similar to the single device Here, the triggering events, stop events and clocking of the input can be different between the devices.

As mentioned above, the DaqX API is a handle-based API. A handle-based API is an API which assigns a unique handle to each device in use. As in the single device scenario, each device needs to be opened using the **daqOpen** function. Each device should be opened using the alias name given to the device in the Daq Configuration Utility located in the Control Panel of WindowsNT/2000/XP operating system. As each device is opened a new, unique **handle** for each device is generated and returned by the **daqOpen** function. The **handle** is a unique identifier for each device and should be used when referencing DaqX functions for the device.

Using this model, each device needs to be uniquely configured using the appropriate **handle** for the device. The acquisition of the data for each device also is managed independently for each device. The diagram below shows how the application should operate with two devices (designated as Device0 and Device1).

Using this model, each device needs to be opened and a device handle assigned. Here the Controlling Process would open each device session according to the device inventory list (this can be interrogated by inspecting the device inventory in the Daq Configuration utility located in the Control Panel of the operating system). The Control Process would then pass each device **handle** to the appropriate Device Process so that each device process can configure the device and acquire data from the device.

Note: While the above diagram does indicate the division of responsibilities within the application, the application may be organized in any fashion desirable. The individual processes need not be separate tasks or threads in order for the multi-device model to work well.

For discussion purposes, the responsibilities of the Controlling Process are as follows:

- 1. For each device, open the device session and retrieve the device handle (see daqOpen).
- 2. Pass each device **handle** to the appropriate Device Process so that the Device Process can configure the acquisition for its device.
- 3. Process any data returned from each Device Process and update any outputs required.
- 4. Optionally, write the input data for each device to disk.

Each device process is responsible for performing the following steps in order:

- 1. Configure the channel scan group for the device including expansion channels (see **daqAdcSetScan** for channel scan group configuration details).
- 2. Configure the acquisition clocking or rate to be used (see **daqAdcSetRate** and **daqAdcSetClockSource** for details on scan rate clocking configurations).
- 3. Configure the acquisition mode to set pre-trigger, post-trigger and update mode (see **daqAdcSetAcq** for details on configuring acquisition mode parameters).
- Configure the means by which the acquisition should start and terminate by configuring the Trigger and Stop Events. (see daqSetTriggerEvent for more details on configuring the Trigger and Stop Events).
- 5. Configure the buffer model to be used for the device. (see **daqAdcTransferSetBuffer** for more details on configuration of the buffer model.
- 6. Initiate a transfer from the device (see **daqAdcTransferStart**) and arm the device to detect the trigger event (see **daqAdcArm**).
- Monitor the status of the input data transfer and the acquisition (see daqAdcTransferGetStat) and optionally pass data back to the Controlling Process.

Since this section deals with asynchronous operation, each device may be independently programmed with respect to steps 1-7. When the devices are independently programmed each device may take on separate acquisition settings such as Trigger/Stop Events, Pre/Post-Trigger modes and buffer model settings. Independent device operation also implies that the data acquired from the different devices cannot be temporally correlated. As such, data from each device should be handled separately in either separate data buffers in memory or separate disk files. Sections to follow illustrate using multiple devices in a synchronized manner.

Synchronous Operation of Multiple Devices

The following sections describe methods for synchronizing input data with multiple DaqX compatible devices. Three synchronization methods will be discussed:

- Internal Clock Method
- Master Clock Method
- External Clock Method

The synchronization method available depends upon the device, i.e., its ability to be externally triggered or externally clocked. The following table shows the capabilities of each device as well as the physical location of the external trigger and pacer input/output clocks.

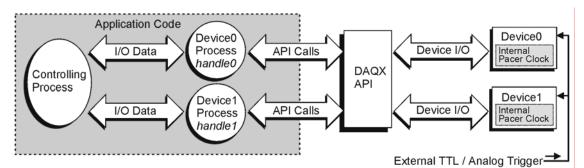
Device	External TTL Trigger	External Acquisition Pacer Clock	Min. External Clock Interval	Acquisition Pacer Clock Output
WaveBook/512	Yes (pin 13 on DB25F)	No	NA	No
WaveBook/516	Yes (pin 13 on DB25F)	Yes (pin 20 on DB25F)	1us (1MHz)	No
DaqBooks	Yes (P1; pin 25)	No	NA	No
Daq PC-Card	Yes (P1; pin 25)	No	NA	No
DaqBoard(ISA)	Yes (P1; pin 25)	No	NA	No
TempBook	Yes	No	NA	No
DaqBoard/500 Series	Yes (pin 6 on SCSI ; TTLTRG on TB-100)	Yes (pin 2 on SCSI ; XAPCR on TB-100)	5us (200kHz)	Yes (pin 2 on SCSI ; XAPCR on TB-100)
DaqBoard/1000 Series	Yes (pin 6 on SCSI ; TTLTRG on TB-100)	Yes (pin 2 on SCSI ; XAPCR on TB-100)	5us (200kHz)	Yes (pin 2 on SCSI ; XAPCR on TB-100)
DaqBoard/2000 Series ¹	Yes (P1; pin 25) Note 2	Yes (P1; pin 20) Note 2	5us (200kHz)	Yes (P1; pin 20) Note 2
DaqBoard/2000c Series ¹	Yes (P1; pin 25) Note 2	Yes (P1; pin 20) Note 2	5us (200kHz)	Yes (P1; pin 20) Note 2
DaqBook/2000 Series	Yes (P1; pin 25) Note 3	Yes (P1; pin 20) Note 3	5us (200kHz)	Yes (P1; pin 20) Note 3
DaqScan/2000 Series	Yes (P1; pin 25)	Yes (P1; pin 20)	5us (200kHz)	Yes (P1; pin 20)
DaqLab/2000 Series	Yes (P1; pin 25)	Yes (P1; pin 20)	5us (200kHz)	Yes (P1; pin 20)
DaqBoard/3000 Series	Yes (pin 6 on SCSI; TTLTRG on TB-100)	Yes (pin 2 on SCSI ; XAPCR on TB-100)	1us (1MHz)	Yes (pin 2 on SCSI ; XAPCR on TB-100)

Synchronization Methods Available			
Device	Internal Clock Method	Master Clock Method	External Clock Method
WaveBook/512	Yes	No	No
WaveBook/516	Yes	Slave only	Yes
DaqBooks	Yes	No	No
Daq PC Card	Yes	No	No
DaqBoard(ISA)	Yes	No	No
TempBook	Yes	No	No
DaqBoard/500 Series	Yes	No	Yes
DaqBoard/1000 Series	Yes	Master or Slave	Yes
DaqBoard/2000 Series Note 1	Yes	Master or Slave	Yes
cPCI DaqBoard/2000c Series Note 1	Yes	Master or Slave	Yes
DaqBook/2000 Series	Yes	Master or Slave	Yes
DaqScan/2000 Series	Yes	Master or Slave	Yes
DaqLab/2000 Series	Yes	Master or Slave	Yes
DaqBoard/3000 Series	Yes	Master or Slave	Yes

Notes:

- 1 Excludes DaqBoard/2003 and cPCI DaqBoard/2003c.
- 2 The P1 connector for DaqBoard/2000 Series and DaqBoard/2000c Series boards is obtained by connecting a DBK200 Series option to the board's P4 connector.
- 3 DaqBook/2020 has a BNC connector for External TTL Trigger and a BNC connector for the external pacer clock. These BNC connectors are in addition to P1 connector pins 25 and 20.

4 Due to processing latencies, no software trigger sources should be used when attempting to do synchronous device acquisitions. When doing synchronous acquisitions the valid trigger modes are limited to External TLL, Analog Hardware, and Immediate trigger sources.


Internal Clock Method

This method synchronizes the devices by sharing the same external trigger event. The external trigger event can be either External TTL or Analog Hardware. In this method, each device still runs independently on its own internal acquisition pacer clock but the acquisition on each device is initiated through the same external trigger event. Using this method it is important that all the devices internal pacer clocks are to the same rate (or at least evenly divisible by the highest rate) in order to ensure that the input data can be temporally correlated.

As mentioned above, the DaqX API is a handle-based API. A handle-based API is an API which assigns a unique handle to each device in use. As in the single device scenario, each device needs to be opened using the **daqOpen** function. Each device should be opened using the alias name given to the device in the Daq Configuration Utility located in the Control Panel of WindowsNT/2000/XP operating system. As each device is opened a new, unique **handle** for each device is generated and returned by the **daqOpen** function. The **handle** is a unique identifier for each device and should be used when referencing DaqX functions for the device.

Using this model, each device needs to be configured using the appropriate **handle** for the device. Some configuration parameters may differ but some parameters need to be configured specifically for this method. Using this model, each device needs to be uniquely configured using the appropriate **handle** for the device. The acquisition of the data for each device also is managed independently for each device.

The diagram below shows how the application should operate with two devices.

Using this model, each device needs to be opened and a device handle assigned. Here the Controlling Process would open each device session according to the device inventory list (this can be interrogated by inspecting the device inventory in the Daq Configuration utility located in the Control Panel of the operating system). The Control Process would then pass each device handle to the appropriate Device Process.

Note: While the above diagram does indicate the division of responsibilities within the application, the application may be organized in any fashion desirable. The individual processes need not be separate tasks or threads in order for the multi-device model to work well.

For discussion purposes, the responsibilities of the Controlling Process are as follows:

- 1. For each device, open the device session and retrieve the device handle (see dagOpen).
- 2. Pass each device **handle** to the appropriate Device Process so that the Device Process can configure the acquisition for its device.
- 3. Interleave the data from each Device Process and update any outputs as required.
- 4. Optionally, write the input data from the devices and write the input data for each device to disk.

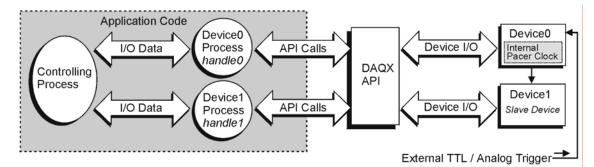
Each device process is responsible for performing the following steps (in order):

- 1. Configure the channel scan group for the device including expansion channels (see daqAdcSetScan for channel scan group configuration details).
- 2. Configure the acquisition for internal pacing and set the rate to be the same for all devices. (see daqAdcSetRate and daqAdcSetClockSource for details on scan rate clocking configurations).
- 3. Configure the acquisition mode to be a counted acquisition (**DaamNShot**) and set **no** pre-trigger and set the post-trigger count to be the same for all devices (see **daqAdcSetAcq** for details on configuring acquisition mode parameters).
- 4. Configure the trigger event to be External TTL (DatsExternalTTL) or Hardware Analog (DatsHardwareAnalog) and the set the sensitivity to be (rising, falling...) the same for all devices. Set the Stop Event to be counted (DatsScanCount). See daqSetTriggerEvent for more details on configuring the Trigger and Stop Events.
- 5. Configure the buffer model to be used for the device. (see **daqAdcTransferSetBuffer** for more details on configuration of the buffer model.
- 6. Initiate a transfer from the device (see daqAdcTransferStart) and arm the device to detect the trigger event (see daqAdcArm).
- 7. Monitor the status of the input data transfer and the acquisition (see daqAdcTransferGetStat) and optionally pass data back to the Controlling Process.

Since this section deals with synchronous operation, each device may be independently programmed with respect to steps 1, 5, 6 and 7. However, steps 2 through 4 need to be set as specified.

Note: In order for this method to work properly the actual acquisition scan rate settings need to be the same for all devices. Be sure to check that the actual scan rates set are equal for all devices (see daqAdcSetRate and daqAdcGetFreq for more information on retrieving the actual scan rate programmed for each device.

Master Clock Method


This method synchronizes the devices by setting all devices to run off a clock generated by a pre-selected Master device. Here the Master device is configured for internal clocking of the acquisition pacer clock. This pacer clock is then output by the Master device to the Slave devices that use the clock for acquisition pacing. In this method, each Slave device is configured for external acquisition pacing and set for immediate trigger. The Master device may be set for Analog Hardware, External TTL Level or immediate triggering. Once armed, the Master device will not drive the pacer clock output until the trigger event occurs. Likewise, the Slave units will not begin acquiring data until the external pacer clock pulses are generated (even though they were set to trigger immediately. When using this method it is important to ensure that the Master clock output is no faster than the largest minimum clock source for any of the Slave devices.

As mentioned above, the DaqX API is a handle-based API. A handle-based API is an API that assigns a unique handle to each device in use. As in the single device scenario, each device needs to be opened using the **daqOpen** function. Each device should be opened using the alias name given to the device in the Daq Configuration Utility located in the Control Panel of WindowsNT/2000/XP operating system. As each device is opened a new, unique **handle** for each device is generated and returned by the **daqOpen** function. The **handle** is a unique identifier for each device and should be used when referencing DaqX functions for the device.

Using this model, each device needs to be configured using the appropriate **handle** for the device. Some configuration parameters may differ but some parameters need to be configured specifically for this method.

Using this model, each device needs to be uniquely configured using the appropriate **handle** for the device. The acquisition of the data for each device also is managed independently for each device.

The diagram below shows how the application should operate.

Using this model, each device needs to be opened and a device handle assigned. Here the Controlling Process would open each device session according to the device inventory list (this can be interrogated by inspecting the device inventory in the Daq Configuration utility located in the Control Panel of the operating system). The Control Process would then pass each device handle to the appropriate Device Process.

- **Note**: While the above diagram does indicate the division of responsibilities within the application, the application may be organized in any fashion desirable. The individual processes need not be separate tasks or threads in order for the multi-device model to work well.
- **Note**: To ensure proper synchronization always configure the Slave devices before configuring the Master device.

For discussion purposes, the responsibilities of the Controlling Process are as follows:

- 1. For each device, open the device session and retrieve the device **handle** (see **daqOpen**).
- 2. Pass each device **handle** to the appropriate Device Process so that the Device Process can configure the acquisition for its device.
- 3. Interleave the data from each Device Process and update any outputs as required.
- 4. Optionally, write the input data from the devices and write the input data for each device to disk.

Each Slave Device Process should configure the Slave device(s) by performing the following steps in the order show:

- 1. Configure the channel scan group for the device including expansion channels (see daqAdcSetScan for channel scan group configuration details).
- 2. Configure the acquisition for external pacing (see **daqAdcSetClockSource** for details on scan rate clocking configurations).
- 3. Configure the acquisition mode to be a counted acquisition (**DaamNShot**) and set **no** pre-trigger and set the post-trigger count to be the same for all Slave devices (see **daqAdcSetAcq** for details on configuring acquisition mode parameters).
- 4. Configure the trigger event to be immediate (DatsImmediate). Set the Stop Event to be counted (DatsScanCount) (see daqSetTriggerEvent for more details on configuring the Trigger and Stop Events).
- 5. Configure the buffer model to be used for the device. (see **daqAdcTransferSetBuffer** for more details on configuration of the buffer model.
- 6. Initiate a transfer from the device (see daqAdcTransferStart) and arm the device to detect the trigger event (see daqAdcArm).
- 7. Monitor the status of the input data transfer and the acquisition (see daqAdcTransferGetStat) and optionally pass data back to the Controlling Process.

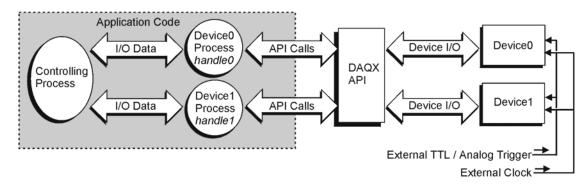
Since this method is a synchronous operation, each device may be independently programmed with respect to steps 1, 5, 6 and 7. However, steps 2 through 4 need to be set as specified.

The Master Device Process should configure the Master Device by performing the following steps (in order):

- 1. Configure the channel scan group for the device including expansion channels (see daqAdcSetScan for channel scan group configuration details).
- 2. Configure the acquisition for internal pacing. This setting will be the pacer clock setting for all devices in the system. (see daqAdcSetRate and daqAdcSetClockSource for details on scan rate clocking configurations).
- 3. Configure the acquisition mode to be a counted acquisition (**DaamNShot**) and set **no** pre-trigger and set the post-trigger count to be the same for all devices (see **daqAdcSetAcq** for details on configuring acquisition mode parameters).
- 4. Configure the trigger event to be Analog Hardware (DatsHardwareAnalog) or External TTL (DatsExternalTTL) if the acquisition is to begin on the detection of an external event. If it is desirable, however, to trigger the acquisition immediately then use an immediate trigger (DatsImmediate). Set the Stop Event to be counted (DatsScanCount). See daqSetTriggerEvent for more details on configuring the Trigger and Stop Events.
- 5. Configure the buffer model to be used for the device. (see **daqAdcTransferSetBuffer** for more details on configuration of the buffer model.
- 6. Initiate a transfer from the device (see **daqAdcTransferStart**) and arm the device to detect the trigger event (see **daqAdcArm**).
- 7. Monitor the status of the input data transfer and the acquisition (see daqAdcTransferGetStat) and optionally pass data back to the Controlling Process.

Since this method is a synchronous operation, each device may be independently programmed with respect to steps 1, 5, 6 and 7. However, steps 2 through 4 need to be set as specified.

External Clock Method


This method synchronizes the devices by sharing the same external clock source. In this method, each device will pace its acquisition on the same external TTL clock source. Here, the external clock source provided can be no faster than the largest of the minimum external clock interval on the system (see previous table).

As mentioned above, the DaqX API is a handle-based API. A handle-based API is an API which assigns a unique handle to each device in use. As in the single device scenario, each device needs to be opened using the **daqOpen** function. Each device should be opened using the alias name given to the device in the Daq Configuration Utility located in the Control Panel of WindowsNT/2000/XP operating system. As each device is opened a new, unique **handle** for each device is generated and returned by the **daqOpen** function. The **handle** is a unique identifier for each device and should be used when referencing DaqX functions for the device.

Using this model, each device needs to be configured using the appropriate **handle** for the device. Some configuration parameters may differ but some parameters need to be configured specifically for this method.

Using this model, each device needs to be uniquely configured using the appropriate **handle** for the device. The acquisition of the data for each device also is managed independently for each device.

The following diagram shows how the application should operate for two devices.

Using this model, each device needs to be opened and a device handle assigned. Here the Controlling Process would open each device session according to the device inventory list (this can be interrogated by inspecting the device inventory in the Daq Configuration utility located in the Control Panel of the operating system). The Control Process would then pass each device **handle** to the appropriate Device Process.

Note: While the above diagram does indicate the division of responsibilities within the application, the application may be organized in any fashion desirable. The individual processes need not be separate tasks or threads in order for the multi-device model to work well.

For discussion purposes, the responsibilities of the Controlling Process are as follows:

- 1. For each device, open the device session and retrieve the device **handle** (see **daqOpen**).
- 2. Pass each device **handle** to the appropriate Device Process so that the Device Process can configure the acquisition for its device.
- 3. Interleave the data from each Device Process and update any outputs as required .
- 4. Optionally, write the input data from the devices and write the input data for each device to disk.

Each Device Process should configure its device by performing the following steps (in order):

- 1. Configure the channel scan group for the device including expansion channels (see daqAdcSetScan for channel scan group configuration details).
- 2. Configure the acquisition for external pacing. (see **daqAdcSetClockSource** for details on scan rate clocking from an external source).
- 3. Configure the acquisition mode to be a counted acquisition (**DaamNShot**) and set **no** pre-trigger and set the post-trigger count to be the same for all devices (see **daqAdcSetAcq** for details on configuring acquisition mode parameters).
- 4. Configure the trigger event to be Analog Hardware (DatsHardwareAnalog) or External TTL(DatsExternalTTL) if the acquisition is to begin on the detection of an external event. If it is desirable, however, to trigger the acquisition immediately then use an immediate trigger (DatsImmediate). Set the Stop Event to be counted (DatsScanCoun). See daqSetTriggerEvent for more details on configuring the Trigger and Stop Events.
- 5. Configure the buffer model to be used for the device. (see **daqAdcTransferSetBuffer** for more details on configuration of the buffer model.
- 6. Initiate a transfer from the device (see **daqAdcTransferStart**) and arm the device to detect the trigger event (see **daqAdcArm**).
- 7. Monitor the status of the input data transfer and the acquisition (see daqAdcTransferGetStat) and optionally pass data back to the Controlling Process.

Since this method is a synchronous operation, each device may be independently programmed with respect to steps 1, 5, 6 and 7. However, in steps 2 through 4, configurations must be as specified.

Daq API Command Reference

```
Overview ...... 4.1-1
Command Information Layout.....4.1-2
Predefined Parameter Definitions.....4.1-4
Mask and Flag Definitions.....4.1-6
Setting/Constructing Mask and Flag Values.....4.1-6
Reading/Interpreting Mask and Flag Values.....4.1-7
API Commands
Alphabetic Listing.....4.1-8
Grouped by Function.....4.1-9
The API Commands, In Detail.....4.2-1
API Error Codes.....4.7-1
```

Overview

This chapter details the particular commands used to program Daq device applications. The first section of this chapter describes briefly the layout of the API Command entries, and is followed by two useful reference sections—first, a table describing the naming conventions of the predefined parameter values, and second, a section breifly describing the use of mask and flag values. After this, two tables of contents are offered: an alphabetical listing of the API commands, and a listing of API commands grouped into catagories of similar function. The API command entries begin after the table of contents, and are themselves arranged in alphabetical order. Following the commands, the API Error Code table is included, detailing the meaning of possible error return messages.

Note: The term "DaqBoard/2000 Series" refers to both the PCI and compact PCI (cPCI) versions of the boards, unless otherwise stated. For example: The use of "DaqBoard/2001" refers to both the DaqBoard/2001 and to the cPCI DaqBoard/2001c.

daqAPICommand {the API Command name, often referred to as a "Function"}

{related commands, if applicable} Also See: dagAPICommand2, dagAPICommand3

Format

daqAPICommand(parameter1, parameter2, parameter3)

Purpose

daqAPICommand does {this is a brief description of the command's purpose}.

Parameter Summary

Parameter	Туре	Description
parameter1	DataTypeA	Briefly states the function of parameter1.
parameter2	DataTypeB	Briefly states the function of parameter2.
parameter3	DataTypeC	Briefly states the function of parameter3.

Parameter Values

parameter1: valid value range for parameter1
parameter2: valid value range for parameter2
parameter3: valid value range for parameter3

Parameter Type Definitions

Data Type Definitions -DataTypeA		
Description Description		
ParamValue1	Describes result of setting DataTypeA to parameter value 1	
ParamValue2	Describes result of setting DataTypeA to parameter value 2	
ParamValue3	Describes result of setting DataTypeA to parameter value 3	

Returns

ReturnMessage1 Return Message definition

"Returns" lists possible return messages that could result from the use of the command. An error message is a return; and all Error information can be found in the Daq Error Table. Not that some commands have no returns.

Function Usage

The function usgage section provides additional information about the various parameters and their possible values. The information usually expands upon that which is presented in the Parameter Summary and Parameter Values tables. For clarity, this section may include sub-sections which discuss groups of parameters; such as parameters that deal with input and output, or parameters which must be used together to accomplish a result (such as a parameter which arms a counter, and another that configures the counter's starting value). The Function Usage subsections may also discuss broader Daq programming concepts.

Prototypes

The prototypes section contains examples in C/C++ or VisualBasic. Examples follow.

C/C++

```
daqAPIcommand(DataTypeA parameter1, DataTypeB parameter2, DataTypeC
parameter3, TypeD parameter4, Type5 parameter5);
```

Visual BASIC

```
VBdaqAPICommand&(DataTypeA parameter1&, DataTypeB parameter2&,
DataTypeC parameter3&,)
```

Program References

This section gives a list of programs which use the function. Programs are separated by a comma and space.

C/C++ programs end in ".CPP"; for example: DAQADCEX01.CPP

VisualBasic programs end in ".FRM" and are followed by "(VB)" for easy recognition; for example: DAQEX.FRM (VB)

Note that program references are not included with every function.

Predefined Parameter Definitions

Many of the predefined parameter values available in the DaqX header files (.h, .bas, .pas) follow a naming convention based upon the type of function or operation they are affecting. These conventions usually take the form of a prefix on the parameter value's name.

Prefix	Data Type	Meaning
Derr	DaqError	Error return code defintions
Dte	DaqTransferEvent	Acquisition transfer data transfer event definitions
Dwm	DaqWaitMode	Wait mode definitions for acquisition transfer
		events
Dhi…	DaqHardwareInfo	Hardware information parameter definitions
Ddi…	DaqInfo	General Daq and expansion device information
		definitions
Dds	DaqDetectSensor	Sensor detection definitions
Dhef	DaqHardwareExtFeatures	Extended hardware features not available in base
		type such as I/O and memory module support
DaqProtocol	DaqProtocol	Protocol definition for the hardware interface
		available for the device
Daet	DaqAdcExpType	Analog expansion unit bank type definitions for
		smart DBK cards (DBK4, DBK7, DBK5, DBK2,
		DBK50 etc)
Doct	DaqAdcExpType	Analog option unit type definitions for WBK option
		cards (WBK11,WBK12,WBK13 etc)
Dmct	DaqAdcExpType	Analog module unit type definitions for WBK
		modules (WBK10,WBK14,WBK15,WBK16 etc)
Dcot	DaqOptionType	Channel option type definitions for WBK card
		options
Ddcot	DaqOptionType	Option type defnitions for DBK card options
Dmot	DaqOptionType	Option type definitions for WBK expansion
		modules
Dbot	DaqOptionType	Option type definitions for base (main) unit
		WaveBooks
Dcof	DaqChanOptionFlagType	Flag to indicate whether to apply the option to the
		channel specified or the entire module defined by
		the channel
Dcov	DaqChanOptionValue	Option value definitions for DBK and WBK option
		types
Dgain	DaqAdcGain	Base (main) unit analog gain codes for
		DaqBook/DaqBoard products
Pgain	DaqAdcGain	Base (main) unit analog gain codes for PersonalDaq
		products
Tgain…	DaqAdcGain	Base (main) unit analog gain codes for TempBook
		products
Wgc	DaqAdcGain	Analog gain codes for WaveBook products
Dbk	DaqAdcGain	Analog gain codes for DaqBook/DaqBoard DBK
		expansion modules
Tbk	DaqAdcGain	Analog gain codes for TempBook Thermocouple
		channels
Daf…	DaqAdcFlag	Channel definition flags use to configure basic
	-	channel types
Dar…	DaqAdcRange	A/D range definitions
DaqType	DaqChannelType	DBK channel type definitions
Dats	DaqAdcTriggerSource	Acquition trigger event (start/stop) source
	-	definitions
Dets…	DaqEnhTrigSensT	Defines trigger sensitivities according to the trigger
		source definition (rising/falling, above/below etc)

Prefix	Data Type	Meaning
Dacs	DaqAdcClockSource	Acquisition clock (pacing) source definitions
Darm	DaqAdcRateMode	Rate mode selection (Period, Frequency, External
		etc)
Daas	DaqAdcAcqState	Acquisition state for which the function or
		operation is to apply (Pre-trigger, Post-trigger, etc)
Daam	DaqAdcAcqMode	Defines the valid acquisition modes for the device
		(counted, infinite, pre and post trigger, re-arm)
Daom	DaqAdcOpenMode	Defines acquisition to file open modes (append,
		create, write)
Datm	DaqAdcTransferMask	Defines acquisition and transfer events
Daaf…	DaqAdcActiveFlag	Defines acquisition transfer and acquistion states
		and events
Dabtm	DaqAdcBufferXferMask	Defines acquisition data buffer allocation and usage
Dardf	DaqAdcRawDataFormatT	Defines raw format types
Daca	DaqAdcCvtAction	Defines conversion actions
Dddt	DaqDacDeviceType	Defines D/A converter device types
Ddom	DaqDacOutputMode	Defines D/A converter output modes such as direct
		(DC) and static/dynamic waveform modes
Ddts	DaqDacTriggerSource	Defines trigger event definitions
Ddcs	DaqDacClockSource	Defines clock source types for waveform output to
		a D/A channel
Ddwm	DaqDacWaveformMode	Defines waveform output modes (static, dynamic,
		from file)
Ddwt	DaqDacWaveType	Defines predefined waveform types
Ddtm	DaqDacTransferMask	Defines waveform output events
Ddwdf	DaqDacWaveFileDataForm	Defines the data file format types for waveform
	at	output from file
Ddaf…	DaqDacActiveFlag	Defines waveform transfer and waverform states
		and events
Dcal…	DcalType	Defines calibration operation for the specified
		channel on the device
Dci…	DaqCalInputT	Defines calibration input channel source
Dctt	DaqCalTableTypeT	Defines calibration table selections (Factory/User)
Dco	DaqCalOperationT	Defines calibration operations available for a
		calabrating a device
Dcopt	DaqCalOptionT	Defines the calibration options
Diodt…	DaqIODeviceType	Defines I/O device types
Diodp	DaqIODevicePort	Defines Local I/O ports
Dioep	DaqIOExpansionPort	Defines Expansion I/O ports
Dc0c	DaqCntr0Config	Configuration parameters for Counter 0
Diooc	DaqIOOperationCode	Defines I/O operation codes
Dtod	Daq9513TimeOfDay	Defines time of day parameters for programming
		time-of-day on 9513
Dgc	Daq9513GatingControl	Defines Gating Control parameters for 9513
		counters
Dcs	Daq9513CountSource	Defines counter source for 9513 counter channel
Doc	Daq9513OutputControl	Defines timer output control definitions for 9513
Dmcc	Daq9513MultCtrCommand	Defines multi-counter commands for 9513
Dtst	DaqTestCommand	Defines test types for device testing

Mask and Flag Definitions

There are a number of parameter types which represent bit-masked values. These bit-masks are used to represent complex settings or states which may not be easily represented by a single value. These parameter data types can be identified by the postfix ...*Flag* or ...*Mask* in the data type name. Special care should be execercised when using these types since one parameter value can represent a number of different states or conditions. These parameter types have a set of pre-defined bit-mask enumerations which represent indvidual states or conditions. These pre-defined enumerations can be found with the ...Flag and ...Mask type definitions found in the DaqX header files (DaqX.c, DaqX.bas, DaqX.pas)

Setting/Constructing Mask and Flag Values

Mask and Flag parameter values can be constructed by "adding" the desired flags together: The following illustrates how to do this in C/C++ and Visual Basic:

<u>C/C++</u>

$Value = Flag1 + Flag2 + Flag3 + \dots Flagn;$	// C language format
channelFlags = DafAnalog + DafBipolar + DafUnsigned;	// C language
example	

Visual Basic

 $Value = \underline{Flag1 + Flag2 + Flag3 + ... Flagn}$ 'Visual Basic format channel Flags& = DafAnalog& + DafBipolar& + DafUnsigned& 'Visual Basic example

An equivalent method is to logically "or" the flags together. See language documentation to use the "or" ing method.

Reading/Interpreting Mask and Flag Values

Reading and interpretting mask and flag parameters returned by the DaqX driver can be a bit trickier. What is needed here is to logically "and" the flags that are of interest with the flags returned from the DaqX API. Those flag bits which are set (bit value =1)

```
<u>C/C++</u>
                  Flags = Flag1 + Flag2 + Flag3 + \dots Flagn;
                                                                                          // C language format
                  If ((Flags \& returnedFlags) == Flags);
                                                                                          // C language format
                  {
                          // Code for flagsSet condition
                  } else {
                          // Code for flags NOT set condition
                  }
             // C Language Example
                  acqFlags = DaafTriggered + DaafAcqActive;
                                                                                          // C language
             example
                 if ((acqFlags & acqReturned) == acqFlags) {
                  {
                           printf("Acquisition has been triggered and post-trigger data is being acquired\n");
                  } else {
                           if (acqReturned & DaafAcqActive) {
                                    printf(" Acquistion is active but has not been triggered\n");
                           } else {
                  printf("Acquisition is not active\n");
              }
         }
```

```
Visual Basic
```

```
Value = <a href="#">Flag1 + Flag2 + Flag3 + ... Flagn</a>' Visual Basic formatchannel Flags& = DafAnalog& + DafBipolar& + DafUnsigned&' Visual Basicexample' Visual Basic
```

API Commands, Alphabetic Listing

dagAdcArm dagAdcBufferRotate daqAdcCalcTrig daqAdcDisarm daqAdcExpSetBank daqAdcGetFreq daqAdcGetScan daqAdcRd daqAdcRdN daqAdcRdScan daqAdcRdScanN daqAdcSetAcq daqAdcSetClockSource daqAdcSetDataFormat daqAdcSetDiskFile daqAdcSetFreq daqAdcSetMux dagAdcSetRate daqAdcSetScan daqAdcSetSetpoints dagAdcSetTrig daqAdcSetTrigEnhanced daqAdcSoftTrig daqAdcTransferBufData daqAdcTransferGetStat daqAdcTransferSetBuffer dagAdcTransferStart dagAdcTransferStop daqAutoZeroCompensate daqCalClearCalTable dagCalConvert daqCalGetCalEquation dagCalGetConstants dagCalPerformSelfCal dagCalSaveCalTable dagCalSaveConstants daqCalSelectCalTable dagCalSelectInputSignal daqCalSetCalEquation dagCalSetCalPoints dagCalSetConstants daqCalSetup daqCalSetupConvert daqClose dagCreateDevice daqCvtChannelType daqCvtHardwareType daqCvtLinearConvert dagCvtLinearSetup dagCvtLinearSetupConvert dagCvtRawDataFormat dagCvtRtdConvert daqCvtRtdSetup

dagCvtRtdSetupConvert dagCvtSetAdcRange daqCvtTCConvert dagCvtTCConvertF daqCvtTCSetup dagCvtTCSetupConvert dagCvtTCSetupConvertF dagDacSetOutputMode daqDacTransferGetStat dagDacTransferStart daqDacTransferStop daqDacWaveArm daqDacWaveDisarm dagDacWaveGetFreq dagDacWaveSetBuffer dagDacWaveSetClockSource daqDacWaveSetDiskFile dagDacWaveSetFreg daqDacWaveSetMode dagDacWaveSetPredefWave dagDacWaveSetTrig daqDacWaveSetUserWave daqDacWaveSoftTrig daqDacWt dagDacWtMany daqDefaultErrorHandler daqDeleteDevice dagFormatError daqGetChannelType dagGetDeviceCount dagGetDeviceInfo dagGetDeviceInventory dagGetDeviceList dagGetDeviceProperties dagGetDriverVersion dagGetHardwareInfo dagGetHardwareType dagGetInfo daqGetLastError daqIOGet8255Conf daqIORead daqIOReadBit daqIOWrite daqIOWriteBit dag0nline daq0pen daqProcessError daqReadCalFile dagSetDefaultErrorHandler dagSetErrorHandler dagSetOption dagSetTimeout dagSetTriggerEvent

daqTest daqWaitForEvent daqWaitForEvents daqZeroConvert daqZeroSetup daqZeroSetupConvert

Note: for 9513 chip-based devices refer to Appendix D.

API Commands, Grouped by Function

Many API commands cannot be used universally across all products. For example, a command that pertains only to analog output is of no use to a device that does not support analog I/O. Thus it is important to understand the features and capabilities of your hardware before using API Commands. Prior awareness can save a great deal of programming time and sidestep possible frustration.

General Commands Calibration	, Intialization, Handling, Getting Information
Functional Category	Command
Calibration (Software Calibration)	daqCalClearCalTable daqCalConvert daqCalGetCalEquation daqCalGetConstants daqCalGetConstants daqCalPerformSelfCal daqCalSaveCalTable daqCalSaveConstants daqCalSelectCalTable daqCalSelectInputSignal daqCalSetCalEquation daqCalSetCalPoints daqCalSetConstants daqCalSetConstants daqCalSetup daqCalSetupConvert daqReadCalFile
Error Handling	daqDefaultErrorHandler daqFormatError daqGetLastError daqProcessError daqSetDefaultErrorHandler daqSetErrorHandler
Event Handling	daqSetTimeout daqWaitForEvent daqWaitForEvents
Get Information, Utility Function (also see "Initialization, Device Initialization")	daqGetChannelType daqGetDriverVersion daqGetHardwareInfo daqGetHardwareType daqGetInfo

Table Continued . . .

General Commands, continued

Initialization (Device Initialization)	daqClose daqCreateDevice daqDeleteDevice daqGetDeviceCount daqGetDeviceInfo daqGetDeviceInventory daqGetDeviceList daqGetDeviceProperties daqOnline daqOpen
Read/Write, General I/O	daqIOGet8255Conf daqIORead daqIOReadBit daqIOWrite daqIOWriteBit
Test	daqTest

Conversion Commands	Conversions and Zero Offset
Functional Category	Command
Calibration	See "General Commands"
Convert Type and Sub Type to String	daqCvtChannelType daqCvtHardwareType
Data Format	daqAdcSetDataFormat daqCvtRawDataFormat daqCvtSetAdcRange
Linear Conversion	daqCvtLinearConvert daqCvtLinearSetup daqCvtLinearSetupConvert
RTD Conversion	daqCvtRtdConvert daqCvtRtdSetup daqCvtRtdSetupConvert
Thermocouple Conversion	daqCvtTCConvert daqCvtTCConvertF daqCvtTCSetup daqCvtTCSetupConvert daqCvtTCSetupConvertF
Zero Offset	daqAutoZeroCompensate daqZeroConvert daqZeroSetup daqZeroSetupConvert

ADC Commands Scan Settings, Expansion, Data Transfer, Triggering	
Functional Category	Command
Arm and Disarm	daqAdcArm daqAdcDisarm
Buffer Manipulation	daqAdcBufferRotate
Data Transfer without Buffer Allocation	daqAdcTransferBufData daqAdcTransferGetStat daqAdcTransferSetBuffer daqAdcTransferStart daqAdcTransferStop
Direct-to-Disk	daqAdcSetDiskFile
Expansion Configuration, ADC	daqAdcExpSetBank daqSetOption
Scan Count, Rate, Source	daqAdcGetFreq daqAdcGetScan daqAdcSetAcq daqAdcSetClockSource daqAdcSetFreq daqAdcSetMux daqAdcSetRate daqAdcSetScan
Scanning, One-Step	daqAdcRd daqAdcRdN daqAdcRdScan daqAdcRdScanN
Setpoints (Configuring Setpoints) Applies to /3000 Series Devices Only	daqAdcSetSetpoints
Trigger	daqAdcCalcTrig daqAdcSetTrig daqAdcSetTrigEnhanced daqAdcSoftTrig daqSetTriggerEvent

DAC Waveform Commands	Settings, Data Transfer, Waveform Control
Functional Category	Command
Arm and Disarm	daqDacWaveArm daqDacWaveDisarm
Buffer Management	daqDacWaveSetBuffer daqDacWaveSetDiskFile daqDacWaveSetPredefWave daqDacWaveSetUserWave
Data Transfer [of Dynamic Waveform]	daqDacTransferGetStat daqDacTransferStart daqDacTransferStop
Output Mode	daqDacSetOutputModeGlobal ConfigurationdaqDacWtVoltage Output ModedaqDacWtManyVoltage Output Mode
Trigger	daqDacWaveSetTrig daqDacWaveSoftTrig
Update Rate and Count	daqDacWaveGetFreq daqDacWaveSetClockSource daqDacWaveSetFreq daqDacWaveSetMode

daqAdcArm

Format

Also See: daqAdcDisarm

daqAdcArm(DaqHandleT handle);

Purpose

daqAdcArm arms an ADC acquisition by enabling the currently defined ADC configuration for an acquisition.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the configured ADC acquisition is to be armed

Parameter Values

handle: obtained from the dagOpen function

Returns

DagError See Dag Error Table

For more details on error messages, please refer to the Daq Error Table.

Function Usage

ADC acquisition will occur when the trigger event (as specified by daqAdcSetTrig) is satisfied. The ADC acquisition configuration must be specified prior to the daqAdcArm function. For a previously configured acquisition, the daqAdcArm function will use the specified parameters. If no previous configuration was given, or it is desirable to change any or all acquisition parameters, then those functions (relating to the desired ADC acquisition configuration) must be issued prior to calling daqAdcArm. As a general rule the following needs to be done before arming the acquisition:

Configure the channels to be scanned (daqAdcSetScan, daqAdcSetMux, daqSetOption)

Configure the acquisition rate or frequency (daqAdcSetFreq, daqAdcSetRate)

Configure the acquisition mode (daqAdcSetAcq)

Configure the acquisition buffer (daqAdcTransferSetBuffer)

Enable the data transfer (daqAdcTransferStart)

Any errors in these pre-requisites are deferred to the daqAdcArm call.

The daqAdcArm function can not be used in conjunction with daqAdcRd... functions. These functions are single step functions and automatically arm the device.

The device acquisition configuration is programmed into the device upon execution of the daqAdcArm function. Consequently, some errors in programming the acquisition configuration will be reported upon return of this function.

For more information on acquisition setup, see *Seven Easy Steps to Data Acquisition* in Chapter 2.

Prototypes

C/C++

daqAdcArm(DaqHandleT handle);

Visual BASIC

VBdaqAdcArm&(ByVal handle&)

Program References

DAQADCEX1.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DBK04EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK54EX.CPP, DAQADCEX07.CPP, DAQEX.FRM (VB)

daqAdcBufferRotate

Also See: daqAdcTransferGetStat, daqAdcTransferSetBuffer

Format

daqAdcBufferRotate(handle, buf, scanCount, chanCount, retCount)

Purpose

daqAdcBufferRotate linearizes a circular buffer acquired via a transfer in cycle mode.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device whose ADC transfer buffer will be rotated
buf	PWORD	Pointer to the buffer being rotated
scanCount	DWORD	Total number of scans in the buffer
chanCount	DWORD	Number of channels in each scan
retCount	DWORD	Last value returned in the retCount parameter of the
		daqAdcTransferGetStat function

Parameter Values

handle: obtained from the daqOpen function

buf: must be a valid pointer to memory whose size is at least equal to

```
(scanCount * chanCount * 2)
```

scanCount: valid length of buffer from 1 to 4,294,967,295 scans; however, memory limitations apply chanCount: defined by channel configuration; see daqAdcSetScan for details retCount: valid range of 1 to 4,294,967,295

Returns

DerrNoError No error

Function Usage

This function will organize the circular buffer chronologically. In other words, it will order the data from oldest-first to newest-last in the buffer. daqAdcBufferRotate is used primarily with pre-trigger scans

When scans are configured using daqAdcTransferSetBuffer with a DatmCycleOn value for the transferMask parameter, the buffer is set up as a circular buffer--once it is full, it is re-used, starting at the beginning of the buffer. Thus, when the acquisition is complete, the buffer may have been written over many times and the location of the last acquired scan may be at any point within the buffer.

For example, suppose a buffer is set to hold 60 scans, and an acquisition of 1000 scans is triggered. The buffer is first filled with scans 1 through 60. Once the end of the buffer is reached, new scans are written at the beginning of the buffer: scan 61 overwrites scan 1, scan 62 overwrites scan 2, and so on, until scan 120 overwrites scan 60. At this point, the end of the buffer has been reached again--so, scan 121 is stored at the beginning of the buffer, overwriting scan 61. This process of writing and overwriting the buffer continues until all 1000 scans have been acquired. At this point, the buffer has the following contents:

Buffer Position	1	2	3	 39	40	41	42	 59	59	60
Scan	961	962	963	 999	1000	941	942	 958	959	960

Since the total number of scans is not an even multiple of the buffer size, the oldest scan is not at the beginning of the buffer, and the last scan is not at the end of the buffer. The daqAdcBufferRotate function can rearrange the scans into a more natural order, writing the final scan into the final buffer position. This results in the follwoing arrangement:

Buffer Position	1	2	3	 39	40	41	42	 59	59	60
Scan	941	942	943	 979	980	981	982	 998	999	1000

If the total number of acquired scans is less than the buffer size, then the scans will not overwrite earlier scans and the buffer is already in a natural chronological order. In this case, daqAdcBufferRotate does not modify the buffer.

In WaveBook/512 applications, daqAdcBufferRotate will only work on unpacked samples.

Prototypes

C/C++

daqAdcBufferRotate(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD
chanCount, DWORD retCount);

Visual BASIC

```
VBdaqAdcBufferRotate&(ByVal handle&, buf%, ByVal scanCount&, ByVal
chanCount&, ByVal retCount&)
```

Program References

None

daqAdcCalcTrig

Also See: daqSetTriggerEvent, daqAdcSetTrig

Format

daqAdcSetTrig(handle, bipolar, gainVal, voltageLevel, triggerLevel)

Purpose

daqAdcSetTrig configures the device for enhanced triggering.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the trigger level will be calculated
bipolar	BOOL	Boolean that, when true, sets trigger to bipolar, and when false, sets trigger to unipolar
gainVal	FLOAT	Gain value of the trigger channel
voltageLevel	FLOAT	Voltage level to trigger at
triggerLevel	PWORD	A pointer to the returned count which is used to program the trigger with the daqAdcSetTrig function

Parameter Values

handle: obtianed from the daqOpen function bipolar: valid values are either true (≠ 0) or false (=0) gainVal: valid values range from 1, 2, 4, 8, 16, 32, 64 voltageLevel: valid values range from -10 to +10 Volts triggerLevel: pointer to a value from 0 to 65,535

Returns

DaqError

See Daq Error Table

For more details on error messages, please refer to the Daq Error Table.

Function Usage

This function has been obsoleted by the dagSetTriggerEvent function, and is presented here only as a reference. See dagSetTriggerEvent for more details.

The daqAdcCalcTrig function calculates the trigger level and source for an analog trigger. The result of daqAdcCalcTrig is stored in the triggerLevel parameter. The value of this parameter can then be passed to the daqAdcSetTrig function to configure the analog trigger. All of this can be accomplished using the daqSetTriggerEvent function.

Prototypes

C/C++

```
daqAdcCalcTrig(DaqHandleT handle, BOOL bipolar, FLOAT gainVal, FLOAT
voltageLevel, PWORD triggerLevel);
```

Visual BASIC

```
VBdaqAdcCalcTrig&(ByVal handle&, ByVal bipolar&, ByVal gainVal!, ByVal
voltageLevel!, triggerLevel&)
```

Program References

None

daqAdcDisarm

Also See: daqAdcArm, daqAdcTransferStop

Format

daqAdcDisarm(handle)

Purpose

daqAdcDisarm disarms an ADC acquisition, if one is currently active.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which to disable ADC acquisitions

Parameter Values

handle: obtained from the dagOpen function

Returns

DerrNoError No error

Funtion Usage

If the specified trigger event has not yet occurred when the daqAdcDisarm function is called, the trigger event will be disabled and no ADC acquisition will be performed. If the trigger event has occurred when the daqAdcDisarm function is called, the acquisition will be halted and the data transfer stopped and no more ADC data will be collected.

Protypes

C/C++

daqAdcDisarm(DaqHandleT handle);

Visual BASIC

VBdaqAdcDisarm&(ByVal handle&)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DBK04EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK53EX.CPP, DBK04EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK53_54EX.CPP

daqAdcExpSetBank

Also See: daqSetOption

Format

daqAdcExpSetBank(handle, chan, bankType)

Purpose

daqAdcExpSetBank internally programs intelligent DBK card channels so the device's gains may be set just before the acquisition.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which to set the expansion bank
chan	DWORD	First channel number on the DBK card (channel numbers are grouped as 16 channels per bank)
bankType	DaqAdcExpType	Type of channel bank

Parameter Values

handle: obtained from the dagOpen function

chan: valid values from 0 to 271 and are defined by channel configuration; see daqAdcSetScan for details

bankType: see table below

Parameter Type Definitions

bankType-(DaqAdcExpType)				
Definition	Description			
DaetNotDefined	Bank is unknown or undefined the bank			
DaetDbk50	Dbk50 or Dbk51 option			
DaetDbk5	Dbk5 option			
DaetDbk2	Dbk2 option			
DaetDbk4	Dbk4 option			
DaetDbk7	Dbk7 option			
DaetDbk55	Dbk55 option			
DaetDbk90	Dbk90 option			

Returns

DerrInvChan

Invalid channel number

For more details on error messages, please refer to the Daq Error Table.

Funtion Usage

A bank consists of 16 main unit channels, allocated to a number of connect DBK cards. DBK cards in a single bank must be all of the same type. The daqAdcExpSetBank function must be called once for each card in the bank. For example, if four 4-channel cards (such as a DBK7) are used in the first expansion bank, you must call daqAdcExpSetBank 4 times with channels 16, 20, 24, and 28.

Prototypes

C/C++

daqAdcExpSetBank(DaqHandleT handle, DWORD chan, DaqAdcExpType bankType);

Visual BASIC

VBdaqAdcExpSetBank&(ByVal handle&, ByVal chan&, ByVal bankType&)

Program References

DBK04EX.CPP, DBK07EX.CPP, DBK50EX.CPP

daqAdcGetFreq

Also See: daqAdcSetFreq, daqAdcSetClockSource, daqAdcSetRate

Format

daqAdcGetFreq(handle, freq)

Purpose

daqAdcGetFreq reads the sampling frequency of the pacer clock.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which to get the current frequency setting
freq	PFLOAT	A variable to hold the currently defined sampling frequency in Hz

Parameter Values

handle: obtained from the daqOpen function freq: must be a valid pointer to a variable defined as a single precision (4-byte) floating point value

Returns

DagError See Dag Error Table

Function Usage

This function can be used after calling the daqAdcSetScan and daqAdcSetRate functions to retrieve the pacer clock's sampling frequency. Valid values for the freq parameter can range from 0.2 mHz to 1.0 MHz, but they are dependent on the device being used--see the discussion of actual scan rates in the entry for daqAdcSetRate. If using a DaqBook or DaqBoard(ISA) device, daqAdcGetFreq assumes that the 1 MHz/10 MHz jumper is set to the default position of 1 MHz.

This function is here for reference only, since it closely resembles the daqAdcSetRate function with its mode parameter set to DarmFrequency. It is recommended that the daqAdcSetRate function be used to retrieve the current acquisition frequency setting.

Prototypes

C/C++

daqAdcGetFreq(DaqHandleT handle, PFLOAT freq);

Visual BASIC

VBdaqAdcGetFreq&(ByVal handle&, freq!)

Program References

None

daqAdcGetScan

Also See: daqAdcSetScan, daqAdcSetMux

Format

daqAdcGetScan(handle, channels, gains, flags, chanCount)

Purpose

daqAdcGetScan reads the current scan group, which consists of all configured channels.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which the current scan configuration will be
		retrieved
channels	PDWORD	A pointer to an array which holds up to 512 channel numbers, or 0 if the
		channel information is not desired
gains	DaqAdcGain	A pointer to an array which holds up to 512 gain values, or 0 if the
		channel gain information is not desired
flags	PDWORD	A pointer to channel configuration flags in the form of a bit mask
chanCount	PDWORD	A pointer to a variable which will hold the number of values returned in
		the channels and gains arrays

Parameter Values

handle: obtained from the daqOpen parameter

- channels: must be a valid pointer to an array which can hold up to chanCount channel numbers (4 bytes/channel); valid values for channel numbers range from 0 to 512
- gains: must be a valid pointer to an array which can hold up to chanCount gain definitions (4 bytes/gain); see ADC Gain Definition table for gains values
- flags: must be a valid pointer to an array which can hold up to chanCount flag configurations (4 bytes/flag); see ADC Flag Definition table for flags values

chanCount: defined by channel configuration; see daqAdcSetScan for details

Returns

DerrNoError No error

Function Usage

The returned parameter settings directly correspond to those set using the daqAdcSetScan function. For further description of these parameters, refer to daqAdcSetScan.

Flags may have the DafSSHHold bit set.

Prototypes

C/C++

```
daqAdcGetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains,
PDWORD flags, PDWORD chanCount);
```

Visual BASIC

```
VBdaqAdcGetScan&(ByVal handle&, channels&(), gains&(), flags&(),
chanCount&)
```

Program References

None

daqAdcRd

Also See: daqAdcSetMux, daqAdcSetTrig, daqAdcSoftTrig

Format

daqAdcRd(handle, chan, sample, gain, flags)

Purpose

daqAdcRd takes a single reading from the given local A/D channel using a software trigger.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which the ADC reading will be acquired
chan	DWORD	A single channel number for which the sample will be taken
sample	PWORD	A pointer to a value where an acquisition sample is stored
gain	DaqAdcGain	The channel's gain setting
flags	DWORD	Channel configuration flags in the form of a bit mask

Parameter Values

handle: obtained from the daqOpen function chan: must be a valid channel number for the device sample: must be a valid pointer to a short integer variable (2 bytes) gain: see ADC Gain Definition table for gain parameter values flags: see ADC Flag Definition table for flags parameter values

Returns

DerrInvGain	Invalid gain
DerrInvChan	Invalid channel
DerrNoError	No error

For more details on error messages, please refer to the Daq Error Table.

Function Usage

This function will use a software trigger to immediately trigger and acquire one sample from the specified acquisition channel.

Prototypes

C/C++

daqAdcRd(DaqHandleT handle, DWORD chan, PWORD sample, DaqAdcGain gain, DWORD flags);

Visual BASIC

```
VBdaqAdcRd&(ByVal handle&, ByVal chan&, sample%, ByVal gain&, ByVal
flags&)
```

Program References

None

Also See: daqAdcSetFreq, daqAdcSetMux, daqAdcSetClockSource, daqAdcSetTrig, daqSetTimeout

Format

```
daqAdcRdN(handle, chan, buf, scanCount, triggerSource, rising, level,
freq, gain, flags)
```

Purpose

daqAdcRdN takes multiple scans from a single acquisition channel.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which the ADC channel
		samples will be acquired
chan	DWORD	A single channel number
buf	PWORD	Array to which the acquisition scans will be returned
scanCount	DWORD	Number of scans to be taken
triggerSource	DaqAdcTriggerSource	The trigger source
rising	BOOL	Boolean flag to indicate whether the edge for the
		trigger source is rising or falling
level	WORD	The trigger level, if an analog trigger is specified
freq	FLOAT	The sampling frequency in Hz
gain	DaqAdcGain	The channel's gain setting
flags	DWORD	Channel configuration flags in the form of a bit mask

Parameter Values

handle: obtained form the daqOpen function

chan: must be a valid channel number for the device

scanCount: valid values range from 1 to 4,294,967,295 scans; however, memory limitations apply.
triggerSource: see table below

rising: valid values are either true ($\neq 0$) or false (=0)

level: valid values range from 0 to 65,535, representing the trigger level in raw, unsigned A/D counts

freq: see the daqAdcSetRate function for details.

gain: see ADC Gain Definition table for gain definitions

flags: see ADC Flag Definition table for flag configurations

Parameter Type Definitions

triggerSource-(DaqAdcTriggerSource)			
Definition	Description		
DatsImmediate	Begins taking post trigger scans immediately upon daqAdcArm function		
DatsAdcClock	Begins taking post trigger scans upon detection of next pacer clock pulse		
DatsGatedAdcClock	Begins taking post trigger scans upon detection of next gated pacer clock pulse		
DatsExternalTTL	Begins taking post trigger scans on the selectable edge of an external TTL signal on pin 25 of P1		
DatsHardwareAnalog	Begins taking post trigger scans upon a selectable criteria of the input signal (above level, below level, rising edge, etc.)		

Returns

DerrFIFOFull DerrInvGain DerrIncChan DerrInvTrigSource DerrInvLevel Buffer overrun Invalid gain Invalid channel Invalid trigger Invalid level

For more details on error messages, please refer to the Daq Error Table.

Function Usage

This function will:

Configure the pacer clock

Configure the channel with the specified gain parameter

Configure the channel options with the channel flags specified

Arm the trigger

Acquire count scans from the specified A/D channel

The freq parameter can have a range of values between 0.2 mHz and 1.0 MHz, but they are dependent on the device being used--see the discussion of actual scan rates in the entry for daqAdcSetRate.

Prototypes

C/C++

daqAdcRdN(DaqHandleT handle, DWORD chan, PWORD buf, DWORD scanCount, DaqAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq, DaqAdcGain gain, DWORD flags);

Visual BASIC

VBdaqAdcRdN&(ByVal handle&, ByVal chan&, buf%, ByVal scanCount&, ByVal triggerSource&, ByVal rising&, ByVal level%, ByVal freq!, ByVal gain&, ByVal flags&)

Program References

None

daqAdcRdScan

Also See: daqAdcSetMux, daqAdcSetClockSource, daqAdcSetTrig, daqAdcRdN

Format

```
daqAdcRdScan(handle, startChan, endChan, buf, gain, flags)
```

Purpose

daqAdcRdScan immediately activates a software trigger to acquire one scan consisting of each channel. The scan begins with startChan and ends with endChan.

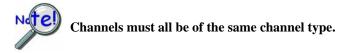
Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which the ADC scan will be acquired
startChan	DWORD	The starting channel of the scan group
endChan	DWORD	The ending channel of the scan group
buf	PWORD	An array into which the acquisition scans will be placed
gain	DaqAdcGain	The channel's gain setting
flags	DWORD	Channel configuration flags in the form of a bit mask

Parameter Values

handle: obtained from the daqOpen function
startChan: must be a valid channel number for the device
endChan: must be a valid channel number for the device and greater than startChan
buf: must be a valid pointer to memory whose size is at least equal to:
 [(endChan - startChan)* (the sample size, normally 2 bytes)]
gain: see ADC Gain Definition table for gain parameter values
flags: see ADC Flag Definition table for flags parameter values

Returns


DerrInvGain	Invalid gain
DerrIncChan	Invalid channel
DerrNoError	No error

For more details on error messages, please refer to the Daq Error Table.

Function Usage

This function will use a software trigger to immediately trigger and acquire one scan. This scan will sample each channel selected, starting with startChan and ending with endChan. The gain setting will be applied to all channels.

Prototypes

C/C++

daqAdcRdScan(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf, DaqAdcGain gain, DWORD flags);

Visual BASIC

VBdaqAdcRdScanN&(ByVal handle&, ByVal startChan&, ByVal endChan&, buf%, ByVal scanCount&, ByVal gain&, ByVal flags&)

Program References

None

daqAdcRdScanN

Also See: daqAdcSetMux, daqAdcSetClockSource, daqAdcSetTrig, daqAdcRdN

Format

```
daqAdcRdScanN(handle, startChan, endChan, buf, scanCount, triggerSource,
rising, level, freq, gain, flags)
```

Purpose

daqAdcRdScanN reads multiple scans from a set of consecutive acquisition channels.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which acquisition scans
		will be acquired
startChan	DWORD	The starting channel of the scan group
endChan	DWORD	The ending channel of the scan group
buf	PWORD	An array into which the acquisition scans will be
		placed
scanCount	DWORD	The number of scans to be read
triggerSource	DaqAdcTriggerSource	The trigger source
rising	BOOL	Boolean flag to indicate the rising or falling edge for
		the trigger source
level	WORD	The trigger level if an analog trigger is specified
freq	FLOAT	The sampling frequency in Hz
gain	DaqAdcGain	The channel's gain setting
flags	DWORD	Channel configuration flags in the form of a bit mask.

Parameter Values

handle: obtained from the dagOpen function

startChan: must be a valid channel number for the device

endChan: must be a valid channel number for the device and greater than startChan

buf: must be a valid pointer to memory whose size is at least equal to:

[(endChan - startChan) * scanCount * (the sample size, normally 2 bytes)]

scanCount: valid values range from 1 to 4,294,967,295 scans; however, memory limitations apply.
triggerSource: see table below

rising: valid values are either true ($\neq 0$) or false (= 0)

level: valid values range from 0 to 65,535, representing the trigger level in unsigned A/D counts

freq: see the daqAdcSetRate function for details

gain: see ADC Gain Definition table for gain parameter values


flags: see ADC Flag Definition table for flags parameter values

Parameter Type Definitions

triggerSource-DaqAdcTriggerSource		
Definition Description		
DatsImmediate	Begins taking post trigger scans immediately upon daqAdcArm function	
DatsAdcClock	Begins taking post trigger scans upon detection of next pacer clock pulse	
DatsGatedAdcClock	Begins taking post trigger scans upon detection of next gated pacer clock pulse	
DatsExternalTTL	Begins taking post trigger scans on the selectable edge of an external TTL signal on pin 25 of P1	
DatsHardwareAnalog	Begins taking post trigger scans upon a selectable criteria of the input signal (above level, below level, rising edge, etc.)	

Returns

DerrInvGain DerrInvChan DerrInvTrigSource DerrInvLevel DerrFIFOFull DerrNoError

For more details on error messages, please refer to the Daq Error Table.

Function Usage

This function will configure the pacer clock, arm the trigger and acquire count scans consisting of each channel, starting with startChan and ending with endChan. The gain and flags settings will be applied to all channels.

The freq parameter is used to set the acquisition frequency. Its valid values can range from 0.2 mHz to 1.0 MHz, but they are dependent on the device being used--see the discussion of actual scan rates in the entry for daqAdcSetRate.

Prototypes

C/C++

daqAdcRdScanN(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf, DWORD scanCount, DaqAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq, DaqAdcGain gain, DWORD flags);

Visual BASIC

VBdaqAdcRdScanN&(ByVal handle&, ByVal startChan&, ByVal endChan&, buf%, ByVal scanCount&, ByVal triggerSource&, ByVal rising&, ByVal level%, ByVal freq!, ByVal gain&, ByVal flags&)

Program References

None

daqAdcSetAcq

Also See: daqAdcArm, daqAdcDisarm, daqAdcSetTrig

Format

daqAdcSetAcq(handle, mode, preTrigCount, postTrigCount)

Purpose

daqAdcSetAcq configures the acquisition mode and the pre- and post-trigger scan durations.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the ADC acquisition is to
		be configured
mode	DaqAdcAcqMode	Selects the mode of the acquisition
preTrigCount	DWORD	Number of pre-trigger acquisition scans to be collected
postTrigCount	DWORD	Number of post-trigger acquisition scans to be collected

Parameter Values

handle: obtained from the daqOpen function.
mode: see table below
preTrigCount: valid value range from 1 to 100,000
postTrigCount: valid values range from 1 to 4,294,967,295; however, memory limitations may apply

Parameter Type Definitions

mode-(DaqAdcAcqMode)		
Definition	Description	
DaamNShot	Triggers and continues acquisition until specified number of post-trigger scans is reached, then disarms acquisition	
DaamNShotRearm	Triggers and continues acquisition until specified number of post-trigger scans is reached, then re-arms acquisition with original parameters (WaveBook only)	
DaamInfinitePost	Once triggered, collects scans until disarmed by the daqAdcDisarm function	
DaamPrePost	Collects specified number pre-trigger scans, triggers acquisition, collects specified number of post-trigger scans, and disarms	

Returns

DerrNoError No error

Function Usage

Configuring the Acquisition Mode

The mode parameter defines certain characteristics of the data acquisiton. Depending on its parameter values, mode can be used to detemine if pre- or post-trigger data will be recorded, how many pre- or post-trigger scans will be collected, and when the acquisition will terminate. The acquisition mode may also specify that the acquisition should be automatically re-armed (using the same acquisition parameters) once the initial acquisition has completed. Each block of aquired trigger scans is placed into the buffer sequentially. The preTrigCount and postTrigCount parameters specify the respective durations of the pre-trigger and post-trigger acquisition states.

Parameter values for mode can be defined as follows:

DaamNShot -- Once triggered, this mode continues acquisition until the specified post-trigger count has been satisfied. Once the post-trigger count has been satisfied, the acquisition will automatically disarm. This mode specifies no pre-trigger and will stop acquiring once the post-trigger scan count has been satisfied. If the acquisition is stopped by means other than reaching the scan count, the stop trigger detection will occur after count scans are acquired.

DaamNShotRearm -- Once triggered, this mode continues the acquisition for the specified post-trigger count, then re-arms the acquisition with the same acquisition configuration parameters as before. The automatic rearming of the acquisition may be disabled at any time by issuing the daqAdcDisarm function. Other than the re-arming feature, this mode works like DaamNShot. Upon re-arming, data collection will only be reinitiated when the trigger event re-occurs after the previous acquisition post-trigger count has been satisfied.

The DaamNShotRearm command can only be used with WaveBooks.

DaamInfinitePost -- Once triggered, this mode begins continuous acquisition until explicitly terminated by the daqAdcDisarm function.

DaamPrePost -- This mode begins collecting the specified number of pre-trigger scans immediately upon issuance of the daqAdcArm function. The trigger will not be enabled until the specified number of pre-trigger scans has been collected. Once triggered, the acquisition will continue collecting post-trigger data until the post-trigger count has been satisfied. Once the post-trigger count has been satisfied, the acquisition will automatically disarm itself and terminate.

Daq 2000 Series devices, DaqBoard/1000 Series devices, and WaveBooks [with WBK 30's] in cycle mode both return the exact pre-trigger amount of data specifies. Other devices record data from before the pre-trigger event (i.e., all scans from arming to disarming). See daqAdcBufferRotate for more details.

Relationship to Trigger Start/Stop Events

The daqAdcSetAcq function sets the style or mode of the acquisition. However, it does not specify trigger start events, nor does it specify trigger stop events--although it does specify stop conditions (if those stop conditions are scan counts or infinite). Specific trigger start and stop events are defined by other functions:

Trigger start events (*EventA*) can be defined using daqAdcSetTrigEnhanced and daqSetTriggerEvent.

Trigger stop events (*EventB*) - can be defined using the daqSetTriggerEvent.

The following table shows the relationship between trigger event definition and acquisition mode parameter settings for possible acquisition configurations:

Desired Acquisition Without Pre-Trigger Scans	mode	preTrigCount	postTrigCount
Trigger acq on <i>EventA</i> and stop on scan <i>n</i> after trigger	DaamNShot	Ignored	n
Trigger acq on <i>EventA</i> and continue indefinitely until disarmed by application (daqAdcDisarm)	DaamInfinitePost	Ignored	Ignored
Trigger acq on <i>EventA</i> , stop on scan <i>n</i> after trigger, then re-arm to trigger on <i>EventA</i> (repeat until disarmed) (Note 1)	DaamNShotRearm	Ignored	Ignored
Trigger acq on <i>EventA</i> and stop on <i>EventB</i> *	DaamInfinitePost	Ignored	Ignored
With Pre-Trigger Scans	mode	preTrigCount	postTrigCount
Take <i>m</i> pretrigger scans, start acq on <i>EventA</i> , and stop on scan <i>n</i> after trigger	DaamPrePost	т	n
Take <i>m</i> pretrigger scans, start acq on <i>EventA</i> , and stop on <i>EventB</i> (Note 2)	DaamPrePost	т	Ignored

Note 1: WaveBook products only.

Note 2: Applies to DaqBook/2000 Series, DaqLab/2000 Series, DaqScan/2000 Series, DaqBoard/2000 Series, DaqBoard/1000 Series, and DaqBoard/500.

Prototypes

C/C++

daqAdcSetAcq(DaqHandleT handle, DaqAdcAcqMode mode, DWORD preTrigCount, DWORD postTrigCount);

Visual BASIC

VBdaqAdcSetAcq&(ByVal handle&, ByVal mode&, ByVal preTrigCount&, ByVal postTrigCount&)

Program References

DDAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DBK04EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK53_54EX.CPP, DAQEX.FRM (VB)

daqAdcSetClockSource

Also See: daqAdcSetFreq, daqAdcGetFreq, daqAdcSetRate

Format

daqAdcSetClockSource(handle, clockSource)

Purpose

dagAdcSetClockSource sets up the clock source to be used to drive the acquisition frequency.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which to set the ADC clock source
clockSource	DaqAdcClockSource	Specifies the clock source for acquisitions

Parameter Values

handle: obtained from the dagOpen function clockSource: see table below

Parameter Type Definitions

D	efinition	Devices	Description
DacsAdcClock		All	Use the internal pacer clock on the device (see daqAdcSetRate)
DacsGa	atedAdcClock	DaqBook, DaqBoard (ISA), TempBook	The internal clock is gated through a external input
DacsTi	riggerSource	DaqBook, DaqBoard (ISA), TempBook	Takes one scan per trigger and stays armed
DacsEx	kternalTTL	Daq Devices [per note 1], WaveBook/516	Use an external clock input for acquisition clock
DacsAc	dcClockDiv2	Daq Devices [per note 1] Does not apply to DaqBoard/500 Series	Uses internal clock divided by 2; used in 100kHz mode (Does not apply to DaqBoard/500 Series)
DacsRi	isingEdge	Daq Devices [per note 1]	External Clock Detection Flag DacsRisingEdge = 0
DacsFa	allingEdge	Daq Devices [per note 1]	External Clock Detection Flag DacsFallingEdge = 0x100
		Internal Clock Output Control Flag Disables the Adc internal clock output (see note 2).	
		Internal Clock Output Control Flag; Enables the Addinternal clock output (see note 2). See Note 3.	
Note 1:	2000 Series DaqB	thin a series may not apply in all cases. Refer to	devices:) Series; DaqBoard/500 Series, DaqScan/2000 Series. user's manual for your specific product in regard to
Note 2:		er output capabilities of the device you must inclu her words, you have to write your daqAdcSet C	the clock source with a parameter that enables the clockSource command as follows:
	<u>C/C++ Style</u>		
	daqi	AdcSetClockSource(handle, DacsAdc	Clock DacsOutputEnable);
	Visual Basic Style:		
	Vbda	aqAdcSetClockSource(handle, DacsA	dcClock + DacsOutputEnable)
	The DacsOutput Output Control Fla Glol	Enable parameter is defined in the header file	in the Dagx . bas module (VB): Disables the Adc internal clock output.
Note 3:		Series: In regard to DacsOutputEnable the resul quency multiplied by the number of channels in	ting frequency from the Adc internal clock output will

Returns

DerrNoError No error

Prototypes

C/C++

daqAdcSetClockSource(DaqHandleT handle, DaqAdcClockSource clockSource);

Visual BASIC

VBdaqAdcSetClockSource&(ByVal handle&, ByVal clockSource&)

Program References

DAQADCEX05.CPP, DBK12_13EX.CPP

daqAdcSetDataFormat

Also See: daqAdcSetMux, daqAdcSetClockSource, daqAdcSetTrig, daqAdcRdN

Format

daqAdcSetDataFormat(handle, rawFormat, postProcFormat)

Purpose

daqAdcSetDataFormat sets the format for both the raw and post-acquisition data returned by the acquisition transfer functions.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	The handle to the device for which to set
		the data format
rawFormat	DaqAdcRawDataFormatT	Specifies the raw data format
postProcFormat	DaqAdcPostProcDataFormatT	Parameter value specifying the data
		formats available

Parameter Values

handle: obtained from the daqOpen function
rawFormat: see table below
postProcFormat: see table below

Parameter Type Definitions

rawFormat-(DaqAdcRawDataFormatT)	
Definition Description	
DardfNative	Data format follows the native-data format of the device it originated from.
DardfPacked	Raw acquisition values are compressed, using empty bits in native format (WaveBook/512 only)

<pre>postProcFormat-(DaqAdcPostProcFormatT)</pre>		
Definition Description		
DappdfRaw	Post-acquisition data follows the rawFormat parameterthis is the default setting.	
DappdfTenthsDegC Data format is in tenths of a degree Celsius		

Returns

DerrNoError No error

Function Usage

Raw Data Formats

The rawFormat parameter indicates how the raw data format will be presented. Normally, the raw-data format represents the data from the A/D converter. The default value for this parameter is DardfNative where the raw-data format follows the native-data format of the A/D for the particular device. The parameter can also be set to DardfPacked, which compresses raw A/D values in order to make full use of all unused bits in any native format that leaves unused bits in the byte-aligned count value. For instance, a 12-bit raw A/D value (which would normally be represented in a 16-bit word, 2-byte count value) will be compressed so that 4 12-bit A/D raw counts can be represented in 3 16-bit word count values. Currently, only the WaveBook/512 supports this packed format (used with the generic functions of the form daqAdcTransfer...).

Post-Acquisition Data Formats

The postProcFormat parameter specifies the format for which post-acquisition data will be presented. It is only valid for TempBook devices reading thermocouples with one-step functions. The postProcFormat format is used by the one-step functions of the form daqAdcRd.... The default value is DappdfRaw, where the post-acquisition data format will follow the rawFormat parameter. The DappdfTenthsDegC parameter specifies the data format to be in tenths of a degree on a Celsius scale.

Certain devices may be limited to the types of raw and post-acquisition data formats which can be presented.

Prototypes

C/C++

daqAdcSetDataFormat(DaqHandleT handle, DaqAdcRawDataFormatT rawFormat, DaqAdcPostProcDataFormatT postProcFormat);

Visual BASIC

```
VBdaqAdcSetDataFormat&(ByVal handle&, ByVal rawFormat&, ByVal
postProcFormat&)
```

Program References

None

daqAdcSetDiskFile

Also See: daqAdcTransferGetStat, daqAdcTransferSetBuffer, daqAdcTransferStart, daqAdcTransferStop

Format

```
daqAdcSetDiskFile(handle, filename, openMode, preWrite)
```

Purpose

daqAdcSetDiskFile sets a destination file for ADC data transfers. ADC direct-to-disk data transfers will be directed to the specified disk file.

File writing only takes place on a **daqAdcTransferGetStat** call.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device which will perform direct-to-disk ADC
		acquisition
filename	LPSTR	String representing the path and name of the file where the raw
		ADC acquisition data will be placed
openMode	DaqAdcOpenMode	Specifies how to open the file for writing
preWrite	DWORD	Specifies the amount to pre-write (in bytes) the file

Parameter Values

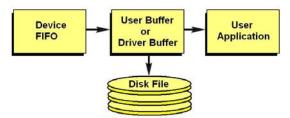
handle: obtained from the daqOpen command

filename: string of characters representing a file name—no effective range of values applies openMode: see table below

preWrite: valid values range from 0 to 4,294,967,295; however, disk memory limitations may apply

Parameter Type Definitions

openMode-(DaqAdcOpenMode)	
Definition Description	
DaomCreateFile	Creates a new file for incoming ADC transfer data.
DaomWriteFile	Writes incoming ADC transfer data over an existing file.
DaomAppendFile	Appends incoming ADC transfer data to an existing file.


Returns

DerrNoError No

No error

Function Usage

The daqAdcSetDiskFile function sends acquisition scan data to a disk file specified by the user. Data written to the disk file is the same raw scan data that is read into the buffer. After the data is written to the disk, it is passed on to whatever application makes use of the buffer. The following diagram illustrates the transfer of data:

daqAdcSetDiskFile only establishes where and how the data will be sent. The writing of data takes place only after calling either the daqAdcTransferGetStat or daqWaitForEvents functions.

The filename parameter is a string representing the path and name of the file to be opened.

The openMode parameter indicates how the file is to be opened for writing data. Valid file open modes are defined as follows:

DaomCreateFile- Create a new file for subsequent ADC transfers. This mode does not require that the file exist beforehand.

DaomWriteFile - Rewrite or write over an existing file. This operation will destroy the original contents of the file.

DaomAppendFile - Open an existing file to append subsequent ADC transfers. This mode should only be used when the existing file has a similar ADC channel group configuration as the subsequent transfers.

The preWrite parameter may be used to specify the extent that the file will be pre-written before the actual data collection begins. This may increase the data-to-disk performance of the acquisition, if the amount of data to be collected is known beforehand. If pre-writing is not desired, then the preWrite parameter should be set to 0.

Prototypes

C/C++

daqAdcSetDiskFile(DaqHandleT handle, LPSTR filename, DaqAdcOpenMode
openMode, DWORD preWrite);

Visual BASIC

```
VBdaqAdcSetDiskFile&(ByVal handle&, ByVal filename$, ByVal openMode&,
ByVal preWrite&)
```

Program References

DAQADCEX04.CPP, DAQEX.FRM (VB)

daqAdcSetFreq

Also See: daqAdcGetFreq, daqAdcSetClockSource, daqAdcSetRate

Format

daqAdcSetFreq(handle, freq)

Purpose

daqAdcSetFreq calculates and sets the frequency of the internal scan pacer clock of the device using the frequency specified in Hz.

Parameter Summary

Parameter	Туре	Description	
handle	DaqHandleT	Handle to the device whose acquisition frequency is being set	
freq	FLOAT	The sampling frequency in Hz	

Parameter Values

handle: obtained from the daqOpen frequency freq: valid values range from 0.2 mHz to 1.0 MHz, depending on the device

Returns

DerrNoError No error

Function Usage

This function follows closely that of the daqAdcSetRate function with the mode parameter set to DarmFrequency. Valid values for the freq parameter range from 0.2 mHz to 1.0 MHz, but are dependent on the device being used--see the discussion of actual scan rates in the entry for daqAdcSetRate.

This function is here for reference only. It is recommended that the daqAdcSetRate function be used instead.

Prototypes

C/C++

daqAdcSetFreq(DaqHandleT handle, FLOAT freq);

Visual BASIC

VBdaqAdcSetFreq&(ByVal handle&, ByVal freq!)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DBK04EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK53_54.CPP, DAQEX.FRM (VB)

daqAdcSetMux

Also See: daqAdcSetScan, daqAdcGetScan

Format

daqAdcSetMux(handle, startChan, endChan, gain, flags)

Purpose

daqAdcSetMux sets a simple scan sequence of local A/D channels from startChan to endChan with the specified gain value.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device whose ADC channel scan group is
		being configured
startChan	DWORD	The starting channel of the scan group
endChan	DWORD	The ending channel of the scan group
gain	DaqAdcGain	The gain value for all channels
flags	DWORD	Channel configuration flags in the form of a bit mask

Parameter Values:

handle: obtained from the daqOpen function
startChan: must be a valid channel number for the device
endChan: must be a valid channel number for the device and greater than startChan
gain: see ADC Gain Definition table for gain parameter values
flags: see ADC Flag Definition table for flags parameter values

Returns

DerrInvGain	Invalid gain
DerrInvChan	Invalid channel
DerrNoError	No error

Reference Note:

For more details on error messages, please refer to the Daq Error Table.

Function Usage

This function provides a simple alternative to daqAdcSetScan if only consecutive channels need to be acquired. The flags parameter is used to set channel-dependent options. The gain and flags parameters will apply to all channels in the specified range.

Prototypes

C/C++

daqAdcSetMux(DaqHandleT handle, DWORD startChan, DWORD endChan, DaqAdcGain
gain, DWORD flags);

Visual BASIC

VBdaqAdcSetMux&(ByVal handle&, ByVal startChan&, ByVal endChan&, ByVal gain&, ByVal flags&)

Program References

DAQEX.FRM (VB)

daqAdcSetRate

Also See: daqAdcSetAcq, daqAdcSetTrig, daqAdcArm, daqAdcSetFreq, daqAdcGetFreq

Format

```
daqAdcSetRate(handle, mode, state, reqValue, actualValue)
```

Purpose

daqAdcSetRate configures the acquisition scan rate using the selected device's built-in acquisition pacer clock.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to device for which to set the scan rate
mode	DaqAdcRateMode	Sets the acquisition mode in terms of period or frequency
state	DaqAdcAcqState	Indicates the acquisition state which scan rate applies to
		(either pre-trigger or post-trigger)
reqValue	FLOAT	Variable which indicates the requested acquisition scan rate
actualValue	PFLOAT	Variable which indicates the actual acquisition scan rate

Parameter Values

handle: obtained from the daqOpen function. mode: see table below state: see table below reqValue: valid values for freq range from 0.0 to 1,000,000.0 actualValue: a pointer to a floating point number, ranging from 0.0 to 1,000,000.0

Parameter Type Definitions

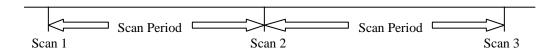
mode-(DaqAdcRateMode)		
Definition Description		
DarmPeriod	Sets requested scan rate in terms of period (nanoseconds)	
DarmFrequency	Sets requested scan rate in terms of frequency (hertz, or channel scans per second)	
DarmExtClockPacer Sets external pacer clock divisor (WaveBook 516 only)		

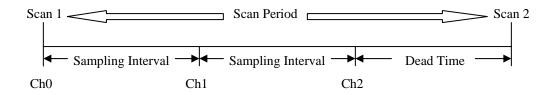
<pre>state-(DaqAdcAcqState)</pre>		
Definition Description		
DaasPreTrig	Scan rate configuration is applied to pre-trigger acquisition state	
DaasPostTrig Scan rate configuration is applied to post-trigger acquisition state		

Returns

DerrNoError No error

Function Usage


The daqAdcSetRate function should be used if internally pacing an acquisition with a device's built-in pacer clock. This function configures the internal pacer clock to the appropriate scanning frequency or period. When the internal pacing clock fires, a new channel scan will be initiated, starting with the first channel in the channel scan group (see the daqAdcSetScan function for channel configuration). The specific period or frequency during which these scans will be taken is determined by the acquisition scan rate setting.

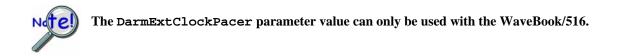

For correct results, the daqAdcSetRate function must be called after daqAdcSetClockSource, daqAdcSetScan (or daqAdcSetMux), and daqAdcSetTrig.

Setting the Scan Rate

The daqAdcSetRate function sets the scan rate interval for a channel scan group. The scan rate is set by the reqValue parameter. Whether the value is given in terms of frequency or period, the requested scan rate is programmed into the built-in pacer clock as a scan interval timer. Once set, this scan interval timer will fire at the requested rate to initiate the scanning of the channel scan group.

When the scan interval timer fires, the first channel in the channel scan group is sampled. The subsequent channels in the scan group are then sampled at the specified sampling interval for the device. The sampling of the individual channels continues until the last channel in the channel scan group has been sampled. The period between the sampling of the last channel in the channel scan group and the next firing of the scan interval timer is "dead time", where no channel sampling is performed.

This function does not set the sampling interval between individual channels within the scan group. Channel sampling interval (if programmable) can be set globally by the daqSetOption function, or individually by the flags parameter of the scan-setting API commands (see daqAdcSetScan).


Scan Rate Mode

The mode parameter allows the setting of the scan rate in either period or frequency. The possible values for this parameter are as follows:

DarmPeriod – This value defines the requested scan rate to be in nanoseconds. In this case, the reqValue parameter will be interpreted as the interval between channel scans in nanoseconds.

DarmFrequency – This value defines the requested scan rate to be in frequency. In this case, the reqValue parameter will be interpreted as the frequency of the scan rate in hertz (or channel scans per second).

DarmExtClockPacer -- Sets external pacer clock divisor. Here reqValue defines the pacer clock divisor value (1 to 255) when the clock source is defined as external (by setting DacsExternalTTL in the daqAdcSetClockSource function). When used as external clock divisor, one scan will be initiated every reqValue pulses on the external clock input.

Scan Rate State

The state parameter indicates the acquisition state for which the channel scan rate applies. The possible values for this parameter are as follows:

DaasPreTrig – This value causes the scan rate configuration to be applied to the pre-trigger acquisition state. All scanning before the trigger event will be scanned at the rate configured.

DaasPostTrig – This value cause the scan rate configuration to be applied to the post-trigger acquisition state. All scanning after the trigger event will be scanned at the rate configured.

Only the WaveBook products support different pre- and post-trigger scan rates. If using a product other than the WaveBook products with pre-trigger configured, the pretrigger scan rate will follow that of the configured post-trigger scan rate.

Actual Scan Rate

The reqValue parameter represents the desired scan rate. However, the requested scan rate may not be attainable. This is due to the fact that the requested rate may not be evenly divisible by the scan rate setting resolution (see the following table concerning scan rate settings) If this is the case, the actual rate will be set to the next highest scan rate value which is evenly divisible by the scan rate setting resolution.

Another potential reason for having an actual rate different than the requested rate is that the total requested scan rate of the channel scan group exceeds the maximum scan rate for which the device is capable. Each channel in the channel scan group takes a fraction of the total scan rate. That fraction of time is equal to the sampling interval for the channel. For instance, if 2 channels are configured on a WaveBook (1 Mhz max), then each channel will require 1µs sampling interval time--the channel scan group will require 2 µs to sample the entire scan. So, the maximum settable scan rate for this 2 channel scan group would be 2 µs (or 500 Khz).

The actualValue parameter returns the actual scan rate, after any adjustments. The format of this parameter will follow that of the reqValue parameter, describing the scan rate in either frequency (Hertz) or period (nanoseconds). The format for both reqValue and actualValue parameters is set using the mode parameter.

Product	Maximum Aggregate Rate	Scan Rate Settings (Pacer Clock Resolution)	Sampling Interval/Channel
DaqBook/100 Series DaqBook/200 Series	100 kHz (10µs)	 10 μs (with JP5 set to 100 kHz) 1 μs (with JP5 set to 1 MHz)* 0.1 μs (with JP5 set to 10 MHz) 	10 μs
DaqBoards(ISA)	100 kHz (10 µs)	1 μs	10 µs
TempBooks	100 kHz (10 µs)	1 µs (with JP5 set to 1 MHz)	10 µs
Daq PC Cards	100 kHz (10 µs)	1 μs	10 µs
WaveBooks	1 MHz (1 µs)	1 μs	1 μs
DaqBoard/500 Series	\leq 200 kHz (5 µs) depending on gain	1 μs	\geq 5 µs depending on gain
DaqBoard/2000 Series cPCI DaqBoard/2000c Series DaqBoard/1000 Series	200 kHz (5 μs) or 100 kHz (10μs) programmable	1 μs	5 μs or 10 μs (programmable)
DaqBook/2000 Series DaqLab/2000 Series DaqScan/2000 Series	200 kHz (5 μs), 100 kHz (10μs) or 1kHz(1000us) programmable	1 μs	5 μs, 10 μs, or 1000us (programmable)

For DaqBook/100 Series, DaqBook/200 Series, and TempBooks, this function assumes that the device's JP5 jumper is set to the default setting of 1 MHz. The other settings can be used but they will impact the actual rate that the unit is programmed. For 100 kHz, the actual rate will be 10 times slower than the reqValue programmed. For 10 MHz, the actual rate will be 10 faster than the reqValue programmed. Also, the returned actualValue value will be in error in a similar fashion.

Prototypes

C/C++

```
daqAdcSetRate(DaqHandleT handle, DaqAdcRateMode mode, DaqAdcAcqState
state, FLOAT reqValue, PFLOAT actualValue);
```

Visual BASIC

VBdaqAdcSetRate(ByVal handle&, ByVal mode&, ByVal state&, ByVal reqValue!, actualValue!);

Program References

None

daqAdcSetScan

Also See: daqAdcGetScan, daqAdcSetMux

Format

daqAdcSetScan(handle, channels, gains, flags, chanCount)

Purpose

daqAdcSetScan configures an acquisition scan group consisting of multiple channels.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which acquisition scan group will be
		configured
channels	PDWORD	An array of channel numbers
gains	DaqAdcGain	Pointer to an array of gain values
flags	PDWORD	Pointer to an array of channel configuration flags in bit mask form.
chanCount	DWORD	The number of elements in the channels, gains and flags arrays

Parameter Values

handle: obtained from the dagOpen function

channels: must be a valid pointer to an array of valid channel numbers for the device; valid values for channel numbers vary per device. See the parameter type definitions table below. Consult your hardware manual if needed.

gains: see table below

flags: see table below

chanCount: valid values vary in range, according to product type.

Parameter Type Definitions

flags

Definition	Description	Valid Channel Values
Analog/High Speed Digit		
DafAnalog	Channel is Analog on P1	Analog P1 Channels (0-271)
DafHighSpeedDigital	Channel is HS Digital I/O on P3	Digital P3 HS Chan (0)
Data Representation Fla	gs (DaqBook/2000 Series; 1000, 2000, 3000 Series DaqB	oards; DaqLab/2000 Series,
DaqScan/2000 Series an	d cPCI DaqBoard/2000c Series)	· · ·
DafUnsigned	Channel ADC data is represented as a 16-bit unsigned	A mar alta ann al
Dalonsigned	integer.	Any channel
DafSigned	Channel ADC data is represented as a 16-bit signed integer.	Any channel
Unipolar/Bipolar Flag (D	aqBook/2000 Series; 1000, 2000, 3000 Series DaqBoards	; DaqLab/2000 Series,
DaqScan/2000 Series an	d cPCI DaqBoard/2000c Series)	-
DafUnipolar	Channel voltage range is from 0 to $+2x$ (Device	Analog P1 Channels (0-271)
Dalompolar	Max/Gain)V	Allalog FT Challers (0-271)
DafBipolar	Channel voltage range is -(Device Max/Gain)V to	Analog P1 Channels (0-271)
Daibipolai	+(Device Max/Gain)V	Analog 1 1 Channels (0-271)
Single Ended/Differentia	I Flag	
DafSingleEnded	Channel is single ended inputs	Analog P1 (0-271)
DafDifferential	Channel is differential inputs	Analog P1 (0-7) (Main unit only)
P2 Digital Channel Flags	; (DaqBook/2000 Series; 1000, 2000, 3000 Series DaqBoa	ards; DaqLab/2000 Series,
DaqScan/2000 Series an	d cPCI DaqBoard/2000c Series)	
DafP2Local8	Channel is Digital on the Local P2	Local Digital P2 Channels (0-4)
DafP2Exp8	Channel is Digital on an Expansion P2	N/A
P3 Digital Channel Flags and cPCI DagBoard/2000	; (DaqBook/2000 Series, DaqBoard/2000 Series, DaqLab/ Dc Series)	2000 Series, DaqScan/2000 Series
DafP3Local16	Channel is HS Digital I/O P3	Digital 16-bit P3 Channel (0)
Counter Type Flags (Dag	Book/2000 Series; 1000, 2000, 3000 Series DaqBoards;	
	d cPCI DagBoard/2000c Series)	
DafCtrPulse	P3 Counter Channel will Tally Pulses	Counter Channels (0-3)
DafCtrTotalize	P3 Counter Channel will Return Frequency	Counter Channels (0-3)
Counter Edge Flags		· · · · · · · · · · · · · · · · · · ·
DafCtrRisingEdge	P3 Counter Channel will Count on Rising Edge	Counter Channels (0-3)
DafCtrFallingEdge	P3 Counter Channel will Count on Falling Edge	Counter Channels (0-3)

Counter Channel Flags (DaqBook/2000 Series; 1000, 2000, 3000 Series DaqBoards; DaqLab/2000 Series, DaqScan/2000 Series and cPCI DaqBoard/2000c Series,WaveBook/516; WBK17)		
DafCtr16	Channel is the 16-bit Counter	Counter Channels (0-3) Note 1
DafCtr32Low	Channel is the Lower 16 bits of the 32-bit Counter	32-bit Counter Low Word (0,2) Note 1
DafCtr32High	Channel is the Higher 16 bits of the 32-bit Counter	32-bit Counter High Word (1,3) Note 1
DaqLab/200	numbers provided for "Counter Channel Flags," app 0 Series, DaqScan/2000 Series; "1000, 2000, 3000 pard/2000c Series products only.	

WBK17 Digital Output Port Flags		
DafDigital8	Digital Output Port (Byte)	Reading of Digital Output
DafDigital16	Digital Output Port and Detector (Byte) << 8	Reading of Digital Output

SSH Hold/Sample Flag - For Internal Use Only		
DafSSHSample	Internal use only	N/A
DafSSHHold	Internal use only	N/A

Sampling Interval Control (Applies to the following Series Devices: /3000, /2000, and DaqBoard/1000)				
DafSettlelus	Allow 1 µs sampling interval (3000 Series Only)	DafSettle1us applies only to valid Analog Channels on 3000 Series devices.		
Netel	In order to obtain the maximum sampling rate for 3000 Series devices, DafSettlelus must be used!			
DafSettle5us	Allow 5 µs sampling interval	Any valid Analog, Digital, or Counter Channel		
DafSettle10us	Allow 10 µs sampling interval	Any valid Analog, Digital or Counter Channel		
DafSettle1ms	Allow 1000us (1ms) sampling interval	For use with DBK90 Channels		

Clear or shift the least significant nibble (DaqBook/1xx,DaqBoard/1xx)				
DafIgnoreLSNibble	Ignore the least significant nibble	Any valid Analog, Digital, or Counter Channel		
DafClearLSNibble	Clear the least significant nibble	Any valid Analog, Digital, or Counter Channel		
DafShiftLSNibble	Shift the least significant nibble	Any valid Analog, Digital, or Counter Channel		

Thermocouple Type Connected to Input				
DafTcTypeNone	No Thermocouple	Any DBK19, DBK52, DBK81-84, DBK90		
DafTcTypeJ	J Type Thermocouple Any DBK19, DBK52, DBK81-84, DB			
DafTcTypeK	K Type Thermocouple	Any DBK19, DBK52, DBK81-84, DBK90		
DafTcTypeT	T Type Thermocouple	Any DBK19, DBK52, DBK81-84, DBK90		
DafTcTypeE	E Type Thermocouple	Any DBK19, DBK52, DBK81-84, DBK90		
DafTcTypeN28	N28 Type Thermocouple	Any DBK19, DBK52, DBK81-84, DBK90		
DafTcTypeN14	N14 Type Thermocouple	Any DBK19, DBK52, DBK81-84, DBK90		
DafTcTypeS	S Type Thermocouple	Any DBK19, DBK52, DBK81-84, DBK90		
DafTcTypeR	R Type Thermocouple	Any DBK19, DBK52, DBK81-84, DBK90		
DafTcTypeB	B Type Thermocouple	Any DBK19, DBK52, DBK81-84, DBK90		
DafTcCJC	CJC Channel	Any DBK19, DBK52, DBK81-84, DBK90		
64 Channel Cards (DBK9	00 only)			
Daf64ChannelExp	Specifies 64-channel local addressing	DBK90 only		

Setpoint flags		Setpoint Flags are used with /3000 Series devices only	
Definition	Description		
DafSetPointEnable	Enable Setpoint detection.	= 0x08000000	
DafSetPointStatus	Enable the control status read in the scan	list. =0x8001	

Note: Also see dagADCSetSetpoints (for /3000 Series Devices Only)

Definition	Description		Applies to		
Definition Description		• •	Applies to		
DgainX1	Main Unit-signal	U	Daq products.		
DgainX2	Main Unit-signal	U	Daq products.		
DgainX4	Main Unit-signal	U	Daq products.		
DgainX8	Main Unit-signal	gain x 8	Daq products.		
DgainX16	Main Unit-signal	gain x 16	DaqBook/2000 Series, DaqLab/2000 Series, DaqScan/2000 Series, DaqBoard/2000 Series, DaqBoard/1000 Series and cPCI DaqBoard/2000c Series products.		
DgainX32	Main Unit-signal	gain x 32	DaqBook/2000 Series, DaqLab/2000 Series, DaqScan/2000 Series, DaqBoard/2000 Series, DaqBoard/1000 Series and cPCI DaqBoard/2000c Series products.		
DgainX64	Main Unit-signal	gain x 64	DaqBook/2000 Series, DaqLab/2000 Series, DaqScan/2000 Series, DaqBoard/2000 Series, DaqBoard/1000 Series and cPCI DaqBoard/2000c Series products.		
WgcX1	Main Unit-signal	gain x 1	WaveBook products.		
WgcX1 WgcX2	Main Unit-signal	*	WaveBook products.		
WgcX5	Main Unit-signal	0	WaveBook products.		
WgcX10	Main Unit-signal	0	WaveBook products.		
	WBK Module - si	0	WaveBook products. WBK11, WBK12, WBK13, and WBK14.		
-	WBK Module - si	0 0			
-		0 0	WBK11, WBK12, WBK13, and WBK14.		
-	WBK Module - si		WBK11, WBK12, WBK13, and WBK14.		
	WBK Module - si	gnal gain x 200	WBK10A with WBK11, WBK12, or WBK13 installed; and WBK14		
DBK4-Filter		.			
Definition		Description	TP' ' 1 ' 1		
Dbk4FilterX1 Dbk4FilterX10			F is on, signal gain x 1		
Dbk4FilterX10 Dbk4FilterX100		DBK4-LPF is on, signal gain x 10 DBK4-LPF is on, signal gain x 100			
Dbk4FilterX1000		DBK4-LPF is on, signal gain x 100			
Dbk4FilterX2		DBK4-LPF is on,			
Dbk4FilterX20		DBK4-LPF is on,			
Dbk4FilterX200		DBK4-LPF is on,			
Dbk4FilterX2000		DBK4-LPF is on,	signal gain x 2000		
Dbk4FilterX4		DBK4-LPF is on,	signal gain x 4		
Dbk4FilterX40		DBK4-LPF is on,			
Dbk4FilterX400		DBK4-LPF is on,			
Dbk4FilterX4000			signal gain x 4000		
Dbk4FilterX8		DBK4-LPF is on,			
Dbk4FilterX80		DBK4-LPF is on, signal gain x 80			
Dbk4FilterX800		DBK4-LPF is on, signal gain x 800 DBK4-LPF is on, signal gain x 8000			
Dbk4FilterX8000 DBK4-Bvpass ¹		DBK4-LPF is on,	signal gain x 8000		
DBK4-Bypass ⁻ Definition		Description			
Definition Dbk4BypassX1_583			signal gain y 1		
Dbk4BypassX1_583 Dbk4BypassX15_83		DBK4-LPF is off, signal gain x 1 DBK4-LPF is off, signal gain x 10			
Dbk4BypassX15_05		DBK4-LPF is off, signal gain x 10 DBK4-LPF is off, signal gain x 100			
Dbk4BypassX1583			DBK4-LPF is off, signal gain x 100 DBK4-LPF is off, signal gain x 1000		
Dbk4BypassX3_166		DBK4-LPF is off, signal gain x 2			
Dbk4BypassX31_66		DBK4-LPF is off			
Dbk4BypassX316_6		DBK4-LPF is off, signal gain x 200			
Dbk4BypassX3166 DI		DBK4-LPF is off, signal gain x 2000			
			DBK4-LPF is off, signal gain x 4		
			K4-LPF is off, signal gain x 40		
Dbk4BypassX633_2			DBK4-LPF is off, signal gain x 400		
Dbk4BypassX6332			, signal gain x 4000		
Dbk4BypassX12_664		DBK4-LPF is off			
Dbk4BypassX126_64		DBK4-LPF is off			
Dbk4BypassX1266_4	£		, signal gain x 800		
Dbk4BypassX12664		DDK4-LPF 18 Off.	, signal gain x 8000		
DBK7 Dbk7X1		DBK7_ signal asi	n x 1 (Use with DBK55 also)		

¹Bypassing the filter adds a hardware gain of x 1.583

DBK9Dbk9VoltageADBK9-RTD reading ADbk9VoltageBDBK9-RTD reading BDbk9VoltageCDBK9-RTD reading CDbk9VoltageDDBK9-RTD reading D	
Dbk9VoltageB DBK9-RTD reading B Dbk9VoltageC DBK9-RTD reading C Dbk9VoltageD DBK9-RTD reading D	
Dbk9VoltageC DBK9-RTD reading C Dbk9VoltageD DBK9-RTD reading D	
Dbk9VoltageD DBK9-RTD reading D	
DBK12	
Dbk12X1 DBK12-signal gain x 1	
Dbk12X2 DBK12-signal gain x 2	
Dbk12X4 DBK12-signal gain x 4	
Dbk12X8 DBK12-signal gain x 8	
Dbk12X16 DBK12-signal gain x 16	
Dbk12X32 DBK12-signal gain x 32	
Dbk12X64 DBK12-signal gain x 64	
DBK13	
Definition Description	
Dbk13X1 DBK13-signal gain x 1	
Dbk13x10 DBK13-signal gain x 10	
Dbk13X100 DBK13-signal gain x 100	
Dbk13X1000 DBK13-signal gain x 1000	
Dbk13X2 DBK13-signal gain x 2	
Dbk13X20 DBK13-signal gain x 20	
Dbk13X200 DBK13-signal gain x 200	
Dbk13X2000 DBK13-signal gain x 2000	
Dbk13X4 DBK13-signal gain x 4	
Dbk13X40 DBK13-signal gain x 40	
Dbk13X400 DBK13-signal gain x 400	
Dbk13X4000 DBK13-signal gain x 4000	
Dbk13X8 DBK13-signal gain x 8	
Dbk13X80 DBK13-signal gain x 80	
Dbk13X800 DBK13-signal gain x 800	
Dbk13X8000 DBK13-signal gain x 8000	
DBK14 Bipolar	
Definition Description	
Dbk14BiCJC DBK14-Bipolar CJC	
Dbk14BiTypeJ DBK14-Bipolar Type J TC	
Dbk14BiTypeK DBK14-Bipolar Type K TC	
Dbk14BiTypeT DBK14-Bipolar Type T TC	
Dbk14BiTypeE DBK14-Bipolar Type E TC	
Dbk14BiTypeN28 DBK14-Bipolar Type N28 TC	
Dbk14BiTypeN14 DBK14-Bipolar Type N14 TC	
Dbk14BiTypeS DBK14-Bipolar Type S TC	
Dbk14BiTypeR DBK14-Bipolar Type R TC	
Dbk14BiTypeB DBK14-Bipolar Type B TC	
DBK14 Unipolar	
Definition Description	
Dbk14UniCJC DBK14-Unipolar CJC	
Dbk14UniTypeJ DBK14-Unipolar Type J TC	
Dbk14UniTypeK DBK14-Unipolar Type K TC	
Dbk14UniTypeT DBK14-Unipolar Type T TC	
Dbk14UniTypeE DBk14-Unipolar Type E TC	
Dbk14UniTypeN28 DBK14-Unipolar Type N28 TC	
Dbk14UniTypeN14 DBK14-Unipolar Type N14 TC	
Dbk14UniTypeS DBK14-Unipolar Type S TC	
Dbk14UniTypeR DBK14-Unipolar Type R TC	
Dbk14UniTypeB DBk14-Unipolar Type B TC	
DBK15 Bipolar	
Definition Description	
Description Dbk15BiX1 DBK15-Bipolar, signal gain x 1	
Dbk15BiX2 DBK15Bipoalr, signal gain x 1	
DBK15DIA2 DBK15Dipoan, signal gain x 1	
Dbk15UniX1 DBK15-Unipolar, signal gain x 1	
Dbk15UniX2 DBK15-Unipolar signal gain v 1	
Dbk15UniX2 DBK15-Unipolar, signal gain x 1	
DBK16	
DBK16 Definition Description	
DBK16 Description Dbk16ReadBridge DBK16-Read String Gage	
DBK16 Description Dbk16ReadBridge DBK16-Read String Gage Dbk16SetOffset DBK16-Read Offset Trimpot	
DBK16 Description Dbk16ReadBridge DBK16-Read String Gage	

DBK18	
Definition	Description
Dbk18X1	DBK18-signal gain x 1
DBK19 Bipolar ¹	
Definition	Description
Dbk19BiCJC	DBK19-Bipolar CJC
Dbk19BiTypeJ	DBK19-Bipolar Type J TC
Dbk19BiTypeK	DBK19-Bipolar Type K TC
Dbk19BiTypeT	DBK19-Bipolar Type T TC
Dbk19BiTypeE	DBK19-Bipolar Type E TC
Dbk19BiTypeN28	DBK19-Bipolar Type N28 TC
Dbk19BiTypeN14	DBK19-Bipolar Type N19 TC
Dbk19BiTypeS	DBK19-Bipolar Type S TC
Dbk19BiTypeR	DBK19-Bipolar Type R TC
Dbk19BiTypeB	DBK19-Bipolar Type B TC
DBK19 Unipolar	
Definition	Description
Dbk19UniCJC	DBK19-Unipolar CJC
Dbk19UniTypeJ	DBK19-Unipolar Type J TC
Dbk19UniTypeK	DBK19-Unipolar Type K TC
Dbk19UniTypeT	DBK19-Unipolar Type T TC
Dbk19UniTypeE	DBK19-Unipolar Type E TC
Dbk19UniTypeN28	DBK19-Unipolar Type N28 TC
Dbk19UniTypeN14	DBK19-Unipolar Type N19 TC
Dbk19UniTypeS	DBK19-Unipolar Type S TC
Dbk19UniTypeR	DBK19-Unipolar Type R TC
Dbk19UniTypeB	DBK19-Unipolar Type B TC
DBK42	BBRI) emploia 1990 B Te
Definition	Description
Dbk42X1	DBK42-signal gain x 1
DBK43/43A	
Definition	Description
Dbk43ReadBridge	DBK43-Read String Gage
Dbk43SetOffset	DBK43-Read Offset Trimpot
Dbk43SetScalingGain	DBK43-Read Scaling Trimpot
DBK44	
Definition	Description
DDK44X1	DBK44-signal gain x 1
Dbk44X1 DBK50	DBK44-signal gain x 1
DBK50	
DBK50 Definition	Description
DBK50 Definition Dbk50Range0	Description DBK50-signal gain x 1
DBK50 Definition	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05
DBK50 Definition Dbk50Range0 Dbk50Range10	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300 DBK51	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300 DBK51 Definition	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300 DBK51 Definition Dbk51Range0 Dbk51Range100mV	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300 DBK51 Definition Dbk51Range0 Dbk51Range100mV	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50 DBK51-signal gain x 5
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300 DBK51 Definition Dbk51Range0 Dbk51Range100mV Dbk51Range10	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300 DBK51 Definition Dbk51Range0 Dbk51Range10 Dbk51Range10 Dbk51Range10 DBK52 Bipolar ¹	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50 DBK51-signal gain x 5 DBK51-signal gain x 0.5
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300 DBK51 Definition Dbk51Range0 Dbk51Range10 Dbk51Range10 Dbk51Range10 DBK52 Bipolar ¹ Definition	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 50 DBK51-signal gain x 0.5 DBK51-signal gain x 0.5 DBK51-signal gain x 50 DBK51-signal gain x 0.5 Description DBK51-signal gain x 50 DBK51-signal gain x 0.5
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300 DBK51 Definition Dbk51Range0 Dbk51Range10 Dbk51Range10 Dbk51Range10 DBK52 Bipolar ¹ Definition Dbk52BiCJC	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 50 DBK51-signal gain x 0.5 DBK51-signal gain x 0.5 Description DBK51-signal gain x 50 DBK51-signal gain x 0.5 Description DBK51-signal gain x 0.5
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300 DBK51 Definition Dbk51Range0 Dbk51Range10 Dbk51Range10 Dbk51Range10 Dbk52Bip0lar ¹ Definition Dbk52BiCJC Dbk52BiTypeJ	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 50 DBK51-signal gain x 0.5 DBK51-signal gain x 50 DBK51-signal gain x 0.5 Description DBK51-signal gain x 50 DBK51-signal gain x 0.5 Description DBK52-Bipolar CJC DBK52-Bipolar Type J TC
DBK50DefinitionDbk50Range0Dbk50Range10Dbk50Range100Dbk50Range300DBK51DefinitionDbk51Range0Dbk51Range10Dbk51Range10DBK52 Bipolar ¹ DefinitionDbk52BiCJCDbk52BiTypeK	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50 DBK51-signal gain x 0.5 Description DBK51-signal gain x 50 DBK51-signal gain x 0.5 Description DBK52-Bipolar CJC DBK52-Bipolar Type J TC DBK52-Bipolar Type K TC
DBK50 Definition Dbk50Range0 Dbk50Range10 Dbk50Range100 Dbk50Range300 DBK51 Definition Dbk51Range0 Dbk51Range10 Dbk51Range10 DBK52 Bipolar ¹ Definition Dbk52BiCJC Dbk52BiTypeJ Dbk52BiTypeK Dbk52BiTypeT	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50 DBK51-signal gain x 5 DBK51-signal gain x 0.5 Description DBK51-signal gain x 5 DBK51-signal gain x 0.5 DBK52-Bipolar CJC DBK52-Bipolar Type J TC DBK52-Bipolar Type K TC DBK52-Bipolar Type T TC
DBK50DefinitionDbk50Range0Dbk50Range10Dbk50Range100Dbk50Range300DBK51DefinitionDbk51Range0Dbk51Range10Dbk51Range10DBK52 Bipolar ¹ DefinitionDbk52BiCJCDbk52BiTypeJDbk52BiTypeTDbk52BiTypeE	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50 DBK51-signal gain x 5 DBK51-signal gain x 0.5 Description DBK51-signal gain x 5 DBK51-signal gain x 0.5 Description DBK52-Bipolar CJC DBK52-Bipolar Type J TC DBK52-Bipolar Type K TC DBK52-Bipolar Type T TC DBK52-Bipolar Type T TC DBK52-Bipolar Type T TC
DBK50DefinitionDbk50Range0Dbk50Range10Dbk50Range100Dbk50Range300DBK51DefinitionDbk51Range0Dbk51Range100mVDbk51Range10DBK52 Bipolar ¹ DefinitionDbk52BiCJCDbk52BiTypeJDbk52BiTypeFDbk52BiTypeEDbk52BiTypeN28	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50 DBK51-signal gain x 5 DBK51-signal gain x 0.5 Description DBK51-signal gain x 5 DBK51-signal gain x 0.5 Description DBK52-Bipolar CJC DBK52-Bipolar Type J TC DBK52-Bipolar Type T TC
DBK50DefinitionDbk50Range0Dbk50Range10Dbk50Range100Dbk50Range300DBK51DefinitionDbk51Range0Dbk51Range100mVDbk51Range10DBK52 Bipolar ¹ DefinitionDbk52BiCJCDbk52BiTypeJDbk52BiTypeTDbk52BiTypeEDbk52BiTypeN28Dbk52BiTypeN14	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50 DBK51-signal gain x 5 DBK51-signal gain x 0.5 Description DBK51-signal gain x 5 DBK51-signal gain x 0.5 DBK52-Bipolar CJC DBK52-Bipolar Type J TC DBK52-Bipolar Type T TC DBK52-Bipolar Type X8 TC DBK52-Bipolar Type N28 TC DBK52-Bipolar Type N28 TC
DBK50DefinitionDbk50Range0Dbk50Range10Dbk50Range100Dbk50Range300DBK51DefinitionDbk51Range0Dbk51Range100mVDbk51Range10DBK52 Bipolar ¹ DefinitionDbk52BiCJCDbk52BiTypeJDbk52BiTypeFDbk52BiTypeEDbk52BiTypeN28Dbk52BiTypeN14Dbk52BiTypeS	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50 DBK51-signal gain x 5 DBK51-signal gain x 0.5 Description DBK51-signal gain x 5 DBK51-signal gain x 0.5 Description DBK52-Bipolar CJC DBK52-Bipolar Type J TC DBK52-Bipolar Type K TC DBK52-Bipolar Type K TC DBK52-Bipolar Type X2 DBK52-Bipolar Type N28 TC DBK52-Bipolar Type N28 TC DBK52-Bipolar Type S TC
DBK50DefinitionDbk50Range0Dbk50Range10Dbk50Range100Dbk50Range300DBK51DefinitionDbk51Range0Dbk51Range100mVDbk51Range10DBK52 Bipolar ¹ DefinitionDbk52BiCJCDbk52BiTypeJDbk52BiTypeTDbk52BiTypeEDbk52BiTypeN28Dbk52BiTypeN14	Description DBK50-signal gain x 1 DBK50-signal gain x 0.5 DKB50-signal gain x 0.05 DBK50-signal gain x 0.06 Description DBK51-signal gain x 1 DBK51-signal gain x 50 DBK51-signal gain x 5 DBK51-signal gain x 0.5 Description DBK51-signal gain x 5 DBK51-signal gain x 0.5 DBK52-Bipolar CJC DBK52-Bipolar Type J TC DBK52-Bipolar Type T TC DBK52-Bipolar Type X8 TC DBK52-Bipolar Type N28 TC DBK52-Bipolar Type N28 TC

DBK52 Unipolar follows.

¹ When using the DBK19 and DBK52 with 10 V devices such as DaqBook/2000 Series, DaqBoard/2000 Series, DaqBoard/1000 Series, DaqScan/2000 Series, DaqLab/2000 Series, cPCI DaqBoard/2000c Series and Daq PC Cards, add four to the gain code.

DBK52 Unipolar			
Definition	Description		
Dbk52UniCJC	DBK52-Unipolar CJC		
Dbk52UniTypeT	DBK52-Unipolar Type T TC		
Dbk52UniTypeE	DBK52-Unipolar Type E TC		
Dbk52UniTypeN28	DBK52-Unipolar Type N28 TC		
Dbk52UniTypeN14	DBK52-Unipolar Type N19 TC		
Dbk52UniTypeS	DBK52-Unipolar Type S TC		
Dbk52UniTypeR	DBK52-Ompolar Type S TC DBK52-Unipolar Type R TC		
Dbk52UniTypeB	DBK52-Unipolar Type B TC		
DBK55			
Definition	Description		
Dbk55X1	DBK55- signal gain x1		
DBK65			
Definition	Description		
Dbk65X1	DBK65 Bipolar X1 Gain		
Dbk65X2	DBK65 Bipolar X2 Gain		
Dbk65X4	DBK65 Bipolar X4 Gain		
Dbk65X8	DBK65 Bipolar X8 Gain		
Dbk65X16	DBK65 Bipolar X16 Gain		
Dbk65X32	DBK65 Bipolar X32 Gain		
Dbk65X64	DBK65 Bipolar X64 Gain		
DBK80			
Definition	Description		
Dbk80X1	DBK80 Bipolar X1 Gain		
Dbk80X2	DBK80 Bipolar X2 Gain		
Dbk80X4	DBK80 Bipolar X4 Gain		
Dbk80X8	DBK80 Bipolar X8 Gain		
Dbk80X16	DBK80 Bipolar X16 Gain		
Dbk80X32	DBK80 Bipolar X32 Gain		
Dbk80X64	DBK80 Bipolar X64 Gain		
DBK85			
Definition	Description		
Dbk85X1	DBK85 Bipolar X1 Gain		
Dbk85X2	DBK85 Bipolar X2 Gain		
Dbk85X4	DBK85 Bipolar X4 Gain		
Dbk85X8	DBK85 Bipolar X8 Gain		
Dbk85X16	DBK85 Bipolar X16 Gain		
Dbk85X32	DBK85 Bipolar X32 Gain		
DBK81-DBK84 Bipolar Only			
Definition	Description		
Dbk81CJC	DBK81-84 Bipolar CJC		
Dbk81TypeJ	DBK81-84 Bipolar Type J TC		
Dbk81TypeK	DBK81-84 Bipolar Type K TC		
Dbk81TypeT	DBK81-84 Bipolar Type T TC		
Dbk81TypeE	DBK81-84 Bipolar Type E TC		
Dbk81TypeN28	DBK81-84 Bipolar Type N28 TC		
Dbk81TypeN14	DBK81-84 Bipolar Type N52 TC		
Dbk81TypeS	DBK81-84 Bipolar Type S TC		
Dbk81TypeR	DBK81-84 Bipolar Type R TC		
Dbk81TypeB	DBK81-84 Bipolar Type B TC		
DBK90 Bipolar Only	Description		
Definition	Description		
Dbk90CJC	DBK90 Bipolar CJC		
Dbk90TypeJ	DBK90 Bipolar Type J TC		
Dbk90TypeK	DBK90 Bipolar Type K TC		
Dbk90TypeT	DBK90 Bipolar Type T TC		
Dbk90TypeE	DBK90 Bipolar Type E TC DBK90 Bipolar Type N28 TC		
Dbk90TypeN28			
Dbk90TypeN14	DBK90 Bipolar Type N52 TC		
Dbk90TypeS	DBK90 Bipolar Type S TC		
Dbk90TypeR	DBK90 Bipolar Type R TC		
Dbk90TypeB	DBK90 Bipolar Type B TC		

¹ When using the DBK19 and DBK52 with 10 V devices such as DaqBook/2000 Series, DaqBoard/2000 Series, DaqBoard/1000 Series, DaqScan/2000 Series, DaqLab/2000 Series, cPCI DaqBoard/2000c Series and Daq PC Cards, add four to the gain code.

Returns

DerrNotCapable	No digital or counter
DerrInvGain	Invalid gain
DerrInvChan	Invalid channel
DerrNoError	No error

For more details on error messages, please refer to the Daq Error Table.

This function may not return an error immediately. daqAdcArm or daqAdcSetRate may return an error from the scan list.

Function Usage

Scan Sequence Configuration

The daqAdcSetScan function is the method by which the scan sequence is programmed. The channel scan is comprised of all channels configured for scanning. When a user application sets each of the values in the channels, gains and flags arrays and passes these array pointers to daqAdcSetScan, the driver interprets each array element as a configuration variable for the corresponding scan element. The following table demonstrates this relationship:

Array Location	Scan Location	Channels Array Elements	gains Array Elements	flags Array Elements
0	0	Channels(0)	gains(0)	flags(0)
1	1	Channels(1)	gains(1)	flags(1)
2	2	Channels(2)	gains(2)	flags(2)
3	3	Channels(3)	gains(3)	flags(3)
4	4	Channels(4)	gains(4)	flags(4)
chanCount+1	chanCount+1	channels(chanCount+1)	gains(chanCount+1)	flags(chanCount+1)

As many as 512 channel entries can be made in the acquisition scan group configuration. Any analog input channel can be included in the scan group configuration at any valid gain setting. Scan group configuration may be composed of local or expansion channels (and, for the DaqBook/DaqBoard, the high-speed digital I/O port). Each of the parameters that define the scan group are described in more detail below:

The channels parameter is a pointer to an array of up to 512 channel values. Each entry represents a channel number in the scan group configuration. Channels can be entered multiple times at the same or different gain and flags settings.

The gains parameter is a pointer to an array of up to 512 gain settings. Each entry in the gain array represents the gain to be used with the corresponding channel entry. Gain entry can be any valid gain setting for the corresponding channel.

The flags parameter is a pointer to an array of up to 512 channel flag settings. Each entry in the flag array represents a 4-byte-wide bit map of channel configuration settings for the corresponding channel entry. The flags can be used to set channel-specific configuration settings such as polarity [and channel type for DaqBook/2000 Series, DaqLab/2000 Series, DaqScan/2000 Series, DaqBoard/2000 Series, DaqBoard/1000 Series and cPCI DaqBoard/2000 Ceries boards]. The channel may require further configuration. If this is the case, then see the daqSetOption function for further channel configuration instructions.

The chanCount parameter is not a configuration parameter in the same sense as the channels, gains and flags parameters—it simply represents the total number of channels in the scan group configuration. This number also represents the number of entries in each of the channels, gains and flags arrays.

To illustrate how the scan group might be configured, suppose that we would like to configure a scan sequence in the following order:

<u>Scan Location 0</u> --- an analog, bipolar, and single-ended channel with gain x 1, using channel 3 <u>Scan Location 1</u> --- a 16-bit HS digital channel on P3 <u>Scan Location 2</u> --- the lower 16-bits on counter 0 used (with scan location 3) as a cascaded 32-bit <u>counter for totalizing</u> <u>Scan Location 3</u> --- the upper 16-bits on counter 2 used (with scan location 2) as a cascaded 32-bit <u>counter for totalizing</u>

The following table shows how an array with the above specifications might be defined. Note that, in this

example, there are 4 channel scan locations (chanCount=4) rather than 3 since the 32-bit cascaded counter occupies two scan locations.

Array Location	Scan Location	channels Array Elements	gains Array Elements	flags Array Elements
0	0	<pre>channels(0) = 3</pre>	gains(0) = DgainX1	flags(0) = DafAnalog + DafBipolar + DafSingleEnded
1	1	channels(1) = 0	gains(1) = N/A	<pre>flags(1) = DafP3Local16</pre>
2	2	channels(2) = 0	gains(2) = N/A	flags(2) = DafCtr32Low + DafCtrTotalize
3	3	channels(3) = 2	gains(3) = N/A	flags(3) = DafCtr32High + DafCtrTotalize

Typical flags Settings

Although the flags parameter may be constructed using any of the defined flags values, the following table illustrates how specific channel configurations are typically defined:

Desired Channel Configuration	Flag1	Flag2	Flag3	Notes
Analog, Bipolar, SE	DafAnalog (Default)	DafBipolar	DafSingleEnded (Default)	Configures P1 local and expansion analog input channel as bipolar, single ended
Analog, Bipolar, DE	DafAnalog (Default)	DafBipolar	DafDifferential	Configures P1 local and expansion analog input channel as bipolar, differential
Analog, Unipolar, SE	DafAnalog (Default)	DafUnipolar (Default)	DafSingleEnded (Default)	Configures P1 local and expansion analog input channel as unipolar, single ended
Analog, Unipolar, DE	DafAnalog (Default)	DafUnipolar (Default)	DafDifferential	Configures P1 local and expansion analog input channel as unipolar, differential
Digital (8 bit), Local P2	DafP2Local8	N/A	N/A	Configures P2 local (8255) digital input channel bank (8-bit)
Digital (8-bit), Expansion P2	DafP2Exp8	N/A	N/A	Configures P2 expansion (8255) digital input channel bank (8-bit)
Digital (16-bit), Local P3	DafP3Local16	N/A	N/A	Configures P3 local (HS Digital) digital input channel bank (16- bit)
Counter (16-bit), Local P3	DafCtr16	DafCtrPulse	DafCtrRisingEdge (Default)	Configures 16-bit P3 counter channel for pulse counting on rising edge of signal
Counter (16-bit), Local P3	DafCtr16	DafCtrTotalize	DafCtrRisingEdge (Default)	Configures 16-bit P3 counter channel for totalize counting on rising edge of signal
Counter (16-bit), Local P3	DafCtr16	DafCtrPulse	DafCtrFallingEdge	Configures 16-bit P3 counter channel for pulse counting on falling edge of signal
Counter (16-bit), Local P3	DafCtr16	DafCtrTotalize	DafCtrFallingEdge	Configures 16-bit P3 counter channel for totalize counting on falling edge of signal
Counter (32-bit- Low) Local P3	DafCtr32Low	DafCtrTotalize	DafCtrRisingEdge (Default)	Configures low word of 32-bit counter on P3 for totalizing on rising edge of signal. Must be paired with a 32-bit counter high word
Counter (32-bit- High) Local P3	DafCtr32High	DafCtrTotalize	DafCtrRisingEdge (Default)	Configures high word of 32-bit counter on P3 for totalizing on rising edge of signal. Must be paired with a 32-bit counter low word

Desired Channel Configuration	Flag1	Flag2	Flag3	Notes
Counter (32-bit- Low) Local P3	DafCtr32Low	DafCtrPulse	DafCtrRisingEdge (Default)	Configures low word of 32-bit counter on P3 for pulse counting on rising edge of signal. Must be paired with a 32-bit counter high word
Counter (32-bit- High) Local P3	DafCtr32High	DafCtrPulse	DafCtrRisingEdge (Default)	Configures high word of 32-bit counter on P3 for pulse counting on rising edge of signal. Must be paired with a 32-bit counter high word
Counter (32-bit- Low) Local P3	DafCtr32Low	DafCtrTotalize	DafCtrFallingEdge	Configures low word of 32-bit counter on P3 for totalizing on falling edge of signal. Must be paired with a 32-bit counter high word
Counter (32-bit- High) Local P3	DafCtr32High	DafCtrTotalize	DafCtrFallingEdge	Configures high word of 32-bit counter on P3 for totalizing on falling edge of signal. Must be paired with a 32-bit counter high word
Counter (32-bit- Low) Local P3	DafCtr32Low	DafCtrPulse	DafCtrFallingEdge	Configures low word of 32-bit counter on P3 for pulse counting on falling edge of signal. Must be paired with a 32-bit counter high word
Counter (32-bit- High) Local P3	DafCtr32High	DafCtrPulse	DafCtrFallingEdge	Configures high word of 32-bit counter on P3 for pulse counting on falling edge of signal. Must be paired with a 32-bit high

For digital and counter channel flags definitions, the corresponding element in the gains array will be ignored. Those flag settings who are marked as default will take on the default value if not explicitly set.

Other flags Settings

There are additional flags that can be added to any flags construct for more specific channel configurations:

Desired Channel Configuration	Flag	Notes
Unsigned Data Representation	DafUnsigned (Default)	Data returned for channel ranges from 0 to 65,535
Signed Data Representation	DafSigned	Data returned for channel ranges from -32,768 to +32,767
5 μs Sampling Interval *	DafSettle5us (Default)	Sets the sampling interval for the channel to 5 μ s
10 μs Sampling Interval *	DafSettle10us	Sets the sampling interval for the channel to 10 µs
1000 μs (1 ms) Sampling Interval *	DafSettle1ms	Sets the sampling interval for the channel to 1000 μ s, (1 ms)
Ignore least significant 4-bits	DafIgnoreLSNibble (Default)	The least significant 4-bits represents a channel tag on a 12 bit device and should be ignored (DaqBook/DaqBoard/1xx series products only)
Clear least significant 4-bits	DafClearLSNibble	The least significant 4-bits will be set to 0
Shift least significant 4-bits	DafShiftLSNibble	The least significant 4-bits will be shifted left by 4 places (making a 12-bit number into a 16-bit number) (DaqBook/DaqBoard/1xx series products only)

* Channel configurations for 5 $\mu s,$ 10 $\mu s\,$ and 1000 μs do not apply to DaqBoard/500 Series devices.

Prototypes

C/C++

daqAdcSetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD flags, DWORD chanCount);

Visual BASIC

VBdaqAdcSetScan&(ByVal handle&, channels&, gains&, flags&, ByVal chanCount&)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DBK04EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK53_54EX.CPP, DAQEX.FRM (VB)

Format

Also See: daqAdcSetScan

Purpose

daqAdcSetSetpoints allows the setting of up to 16 setpoints for a device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	The handle to the device for which to set the option
limitA	PFLOAT	Limit A specifies a value against which to determine if setpoint criteria are met
limitB	PLFOAT	Limit B specifies a value against which to determine if setpoint criteria are met
reserved	PFLOAT	Reserved – reserved for future use
setpointFlags	DWORD	The value of the option to set
setpointOutput	DWORD	Output source or action: None, P2 Port C, Timer0-1, DAC0-3
output1	PFLOAT	The value to output when the setpoint criteria are met
output2	PFLOAT	The value to output when the setpoint criteria are NOT met
outputMask1	PFLOAT	Output mask for output1 – for P2 Port C only
outputMask2	PFLOAT	Output mask for output2 – for P2 Port C only
setpointCount	DWORD	Number of setpoints to configure (16 max)

Parameter Values

handle: obtained from the dagOpen function

limitA: any valid value for the input channel used for the setpoint

limitB: any valid value for the input channel used for the setpoint

reserved: not specified

setpointFlags: see following table

setpointOutput: see following table

 ${\tt output1}$: any valid value for the output channel used for the setpoint

output2: any valid value for the output channel used for the setpoint

setpointCount: from 0 to 16

Parameter Type Definitions

setpointflags - DaqSetpointFlags		
Definition	Description	
DsfEqualLimitA	Setpoint criteria: Input Channel = limit A	
DsfLessThanLimitA	Setpoint criteria: Input Channel < limit A	
DsfGreaterThanLimitB	Setpoint criteria: Input Channel > limit B	
DsfOutsideLimits	Setpoint criteria: Input Channel > limit A OR Input Channel < limit B	
DsfInsideLimits	Setpoint criteria: Input Channel < limit A AND Input Channel > limit B	
DsfHysteresis	Setpoint criteria: Input Channel > limit A then output1 Input Channel < limit B then output2	
DsfUpdateOnTrueOnly	If criteria met then output1	
DsfUpdateOnTrueAndFalse	If criteria met then output1 else output2	

For outside or inside window limits (DsfOutsideLimits, DsfInsideLimits) and for hysteresis (DsfHysteresis) <u>Limit A must be greater than Limit B</u>. If this criteria is not met DerrSetpointLimits error (error code 164) will be returned.

setpointOutput - DaqSetpointOutputT		
Definition	Description	
DsoNone	Perform no outputs	
DsoP2PortC	Output to P2 Port C when criteria met	
DsoDAC0	Output to DAC0 when criteria met (must have device with DAC0)	
DsoDAC1	Output to DAC1 when criteria met (must have device with DAC1)	
DsoDAC2	Output to DAC2 when criteria met (must have device with DAC2)	
DsoDAC3	Output to DAC3 when criteria met (must have device with DAC3)	
DsoTMR0	Output to Timer0 when criteria met	
DsoTMR1	Output to Timer1 when criteria met	

Function Usage

The daqAdcSetSetpoints function may be used to setpoints for those devices which support setpoint controlled outputs such as the DaqBoard/3000 and PersonalDaq/3000 Series devices. Up to 16 separate setpoints are supported and an input channel can have more than one setpoint associated with it. Any input channel can be configured to use a setpoint including analog, digital or counter channels. However, if the input channel is a TC channel, there will be no compensation or linearization of the channel applied when evaluating the setpoint and the setpoint input channel must be specified in voltage. The daqAdcSetSetpoints function only configures the setpoints. See daqAdcSetScan function for information regarding how to associate an input channel to a setpoint.

Each setpoint requires an input channel, a detection criteria and and output or action to be performed when the detection critera are met. As mentioned before, the input channel can be an analog voltage, digital or counter channel. If a counter channel is used and the counter channel is a 32-bit counter the setpoint can only be evaluated against either the high or low order word (or 16-bits) of the counter. See the See daqAdcSetScan function for information regarding how to configure the high and low order words in the scan list.

While data is being collected by the device the input signal is compared to the detection criteria mentioned above. When given criteria are met the result is a condition which is driven High(True) or Low(False) depending upon current state of the signal. The rate at which the condition is updated depends upon the overall scan rate selected for the acquisition. See See daqAdcSetRate function for more details on setting up the scan rate. So the detection of change of input state against the criteria can be no faster than the overall acquisition scan rate.

The output target or channel can be the P2 Port C, Timer0, Timer1 or any of the onboard DAC. In addition, the user may select no outputs to be peformed. When the condition is driven High(True) or Low(False) the UpdateOnTrueOnly and the UpdateOnTrueAndFalse flags determine which output value will be used to update the output channel.

If Timer0 or Timer1 (TMR0 or TMR1) is the output channel, then the value you enter is that of the 1 MHz clock divisor. The following table shows 5 examples of divisor value and associated Timer Output Frequency.

Divisor	Timer Output Frequency
1	1 MHz
100	10 kHz
1000	1 kHz
5000	200 Hz
65535	15.259 Hz

If using UpdateOnTrueOnly, then output1 will be updated to the output channel each time the criteria is met. If using UpdateOnTrueAndFalse, then output1 will be updated to the output channel each time the criteria is met. In addition output2 will be updated to the output channel each time the criteria is NOT met.

See your device hardware manual for a more complete description and theory of operations for the setpoint feature.

Returns

For outside or inside window limits (DsfOutsideLimits, DsfInsideLimits) and for hysteresis (DsfHysteresis) <u>Limit A must be greater than Limit B</u>. If this criteria is not met DerrSetpointLimits error (error code 164) will be returned.

DerrSetpointLimitsSetpoint comparison, limit B is greater than Limit A.DerrNoErrorNo error

Prototypes

C/C++

daqAdcSetSetpoints(DaqHandleT handle, PFLOAT LimitA, PFLOAT LimitB, PFLOAT reserved,PDWORD setpointFlags,DaqSetpointOutputT *setpointOutput, PFLOAT output1,PFLOAT output2,PFLOAT outputMask1,PFLOAT outputMask2, DWORD setpointCount);

Visual BASIC

VBdaqAdcSetSetpoints&(ByVal handle&, ByRef LimitA!, ByRef LimitB!, ByRef Reserved!, ByRef SetpointFlags&, ByRef SetpointOutput&, ByRef Output1!, ByRef Output2!, ByRef OutputMask1!, ByRef OutputMask2!, ByVal SetpointCount&)

Program References

Daq3KEnhancedCounters.cpp Daq3KEncoderExample.cpp Daq3KMultiChannelSetpointTrig.cpp Daq3KSetpointExample.cpp

daqAdcSetTrig

Also See: daqAdcSetAcq, daqAdcSetTrigEnhanced, daqAdcSetScan, daqSetTriggerEvent, daqAdcSoftTrig

Format

daqAdcSetTrig(handle, triggerSource, rising, level, hysteresis, channel)

Purpose

daqAdcSetTrig configures the device for enhanced triggering.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the ADC
		acquisition trigger will be configured
triggerSource	DaqAdcTriggerSource	Sets the trigger source
rising	BOOL	Boolean flag to indicate the rising or falling edge
		of the trigger source
level	WORD	The trigger level (in A/D counts) for an analog
		level trigger
hysteresis	WORD	Hysteresis value for an analog level trigger (if
		selected)
channel	DWORD	Channel for which the analog level trigger will be
		detected (if selected)

Parameter Values

handle: obtianed from the daqOpen function
triggerSource: see table below
rising: valid values are either true (≠ 0) or false (= 0)
level: valid values range from 0 to 65,535
hysteresis: valid values range from 0 to 65,535
channel: valid values range from 0 to 271

Parameter Type Definitions

trigSource-(DaqAdcTriggerSource)		
Definition	Devices Description	
DatsImmediate	All	Post-trigger data acquisition begins immediately upon invocation of the daqAdcArm command (no pre-trigger data acquisition is possible with this trigger source)
DatsSoftware	All	Post-trigger data acquisition begins upon a software command issued by the calling application (see daqAdcSoftTrig)
DatsAdcClock	All	Post-trigger data acquisition begins immediately upon invocation detection of the Adc Clock pulse being driven.
DatsGatedAdcClock	DaqBooks DaqBoard(ISA)	Post-trigger data acquisition begins immediately upon invocation detection of the Adc Clock pulse being driven.
DatsExternalTTL	All	Post-trigger data acquisition begins on the selectable edge of an external TTL signal. Refer to the applicable user's manual for pinouts showing the location of the external TTL signal connection.
DatsHardwareAnalog	All	Post-trigger data acquisition begins upon a selectable criteria of the input signal (above level, below level, rising edge, etc.)
DatsSoftwareAnalog	All	Post-trigger data acquisition begins upon a selectable criteria of the input signal (above level, below level, rising edge, etc.)

Returns

DaqError

See Daq Error Table.

Function Usage

This function has been obsoleted by the **daqSetTriggerEvent** function, and his presented here only as a reference. See **daqSetTriggerEvent** for more details.

The daqAdcSetTrig function sets and arms the trigger of the A/D converter. Several trigger sources and several mode flags can be used for a variety of acquisitions. daqAdcSetTrig will stop current acquisitions, empty acquired data, and arm the device using the specified trigger. All of this can be accomplished using the daqSetTriggerEvent function.

Prototypes

C/C++

```
daqAdcSetTrig(DaqHandleT handle, DaqAdcTriggerSource triggerSource, BOOL
rising, WORD level, WORD hysteresis, DWORD channel);
```

Visual BASIC

VBdaqAdcSetTrig&(ByVal handle&, ByRef triggerSource&, ByVal rising&, ByVal level%, ByVal hysteresis%, ByVal channel&)

Program References

None

daqAdcSetTrigEnhanced

Also See: daqAdcSetAcq, daqAdcSetScan,daqAdcSetTrigEnhanced,daqSetTriggerEvent, daqAdcSoftTrig

Format

```
daqAdcSetTrigEnhanced(handle, trigSources, gains, adcRanges,
trigSensitivity, level, hysteresis, channels, chanCount, opStr)
```

Purpose

daqAdcSetTrigEnhanced configures the device for enhanced triggering.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the ADC acquisition trigger will be configured
trigSources	DaqAdcTriggerSource	A pointer to an array of trigger sources for each defined trigger channel
gains	DaqAdcGain	A pointer to an array of gains for each defined trigger channel
adcRanges	DaqAdcRangeT	A pointer to an array of polarity flag definitions for each defined channel
trigSensitivity	DaqEnhTrigSenseT	A pointer to an array of trigger sensitivity flags for each defined channel trigger source
level	PFLOAT	A pointer to an array of analog trigger levels for each defined trigger channel
hysteresis	PFLOAT	A pointer to an array of hysteresis values for each defined trigger channel
channels	PDWORD	A pointer to an array of trigger channels representing the actual trigger channels to trigger on
chanCount	DWORD	Number of trigger channels
opStr	char	A pointer to an array of characters which determines the interaction of the trigger channels

Parameter Values

handle: obtianed from the daqOpen function trigSources: see table below gains: see the ADC Gains Table adcRanges: see table below trigSensitivity: see table below level: a pointer to an array of values ranging from -10.0 to +10.0 Volts hysteresis: a pointer to an array of values ranging from -10.0 to +10.0 Volts channels: a pointer to an array of values ranging from 0 to 71 chanCount: valid values range from 1 to 512 opStr: a pointer to an array characters which can be "+" or "-"

Parameter Type Definitions

trigSource-(DaqAdcTriggerSource)		
Definition	Devices	Description
DatsImmediate	All	Post-trigger data acquisition begins immediately upon invocation of the daqAdcArm command (no pre-trigger data acquisition is possible with this trigger source)
DatsSoftware	All	Post-trigger data acquisition begins upon a software command issued by the calling application (see daqAdcSoftTrig)
DatsExternalTTL	All	Post-trigger data acquisition begins on the selectable edge of an external TTL signal. Refer to the applicable user's manual for pinouts showing the location of the external TTL signal connection.
DatsHardwareAnalog	All	Post-trigger data acquisition begins upon a selectable criteria of the input signal (above level, below level, rising edge, etc.)
DatsEnhancedTrig	WaveBooks	Post-trigger data acquisition begins upon the detection of the multiple channel trigger event defined by daqAdcSetTrigEnhanced
DatsSoftwareAnalog	All	Post-trigger data acquisition begins upon a selectable criteria of the input signal (above level, below level, rising edge, etc.)
DatsDigPattern	Supported within most product series. <i>Refer to your</i> <i>product-specific user manual</i> <i>regarding applicability.</i>	Post-trigger data acquisition beings upon receiving a specified byte length digital pattern on a P2 digital port.
DatsPulse	WaveBook/516	Post-trigger data acquisition begins upon detection of a detection of a pulse of specified duration and magnitude on an analog input channel.

adcRanges-(DaqAdcRangeT)		
Definition	Description	
DarUni0to10V	Sets acquisition range as unipolar from 0 to +10 Volt range	
DarBiMinus5to5V	Sets acquisition range as bipolar from -5 to +5 Volt range	
DarUniPolarDE	Sets acquisition range as unipolar differential	
DarBiPolarDE	Sets acquisition range as bipolar differential	
DarUniPolarSE	Sets acquisition range as unipolar single-ended	
DarBiPolarSE	Sets acquisition range as bipolar single-ended	

trigSensitivity-(DaqEnhTrigSenseT)		
Definition	Description	
DatdRisingEdge	Trigger the channel on the rising edge of the signal at the specified level	
DatdFallingEdge	Trigger the channel on the falling edge of the signal at the specified level	
DatdAboveLevel	Trigger the channel when the signal is above the specified level	
DatdBelowLowel	Trigger the channel when the signal is below the specified level	
DatdRisingEdgeLatched	Trigger the channel on the rising edge of the signal at the specified level and latch the channel trigger event	
DatdFallingEdgeLatched	Trigger the channel on the falling edge of the signal at the specified level and latch the channel trigger event	
DatdAboveLevelLatched	Trigger the channel when the signal is above at the specified level and latch the channel trigger event	
DatdBelowLevelLatched	Trigger the channel when the signal is below at the specified level and latch the channel trigger event	

The Latched values are trigger sensitivities which indicate that the device will maintain the trigger event for the given channel, regardless of subsequent states of the input signal. After the channel has triggered, it will remain in a triggered state while the current acquisition is active. The non-latched trigger sensitivities will only indicate a channel trigger event while the input signal for the given channel is in the triggered state.

Returns

DaqError

See Daq Error Table.

Function Usage

Enhanced trigger configuration available through the daqAdcSetTrigEnhanced command allows the device to detect a trigger start event formed with multiple acquisition channels. The enhanced trigger start event may be defined as a combination of multiple acquisition channel event conditions that are connected logically by AND or OR.

To use multi-channel analog triggering, the trigSource parameter needs to be set to DatsEnhTrigger. Other trigger sources may used with the WaveBook as well --however, they can only act upon the first channel defined in the trigger channels array.

The daqAdcSetTrigEnhanced command sets the trigger start event only. The start event defines the method by which the acquisition is to begin collecting data. When the trigger event is satisfied, the device will begin to collect post-trigger data. The acquisition will terminate based on the acquisition mode parameter set in the daqAdcSetAcq command.

The trigger event is based on the channel trigger event for each channel in the trigger sequence. The total number of trigger channels is defined by the chanCount parameter. Each channel trigger configuration parameter is a pointer to an array of chanCount length and is defined as follows:

channels – a pointer to an array of actual scan channel numbers; these channels will be assigned corresponding trigger events.

trigSources – a pointer to an array of trigger sources for which the corresponding A/D trigger events will be configured on the corresponding channel as defined in the channels array.

gains – a pointer to an array of gains corresponding to the actual A/D channels with the corresponding A/D channel number as defined in the channels array. This setting applies only for analog trigger channels.

adcRanges – a pointer to an array of A/D ranges for the A/D channels as defined in the corresponding channels array. This setting applies only for analog trigger channels.

hysteresis – a pointer to an array of hysteresis values for each corresponding A/D channel as defined in the channels array.

level – a pointer to an array of level values for which, when satisfied, will set the trigger event for the corresponding channel as defined in the channels array.

opStr – a string that establishes the logical relationship between the individual channel trigger events and the global acquisition trigger condition. Currently, the string can be defined as "*" to perform an AND operation, or "+" to perform an OR operation on the individual channel trigger events. These two logical connections can be used to formulate global A/D trigger conditions. If the AND operation is selected, then *all* trigger channels must be in the triggered condition for the trigger event to occur. If the OR operation is selected, then *any* of the trigger channels can be in the triggered condition for the trigger event to occur.

trigSensitivity – an array of trigger sensitivity definitions for a specified trigger event on the corresponding channel as defined in the channels array.

Prototypes

C/C++

daqAdcSetTrigEnhanced(DaqHandleT handle, DaqAdcTriggerSource *trigSources, DaqAdcGain *gains, DaqAdcRangeT *adcRanges, DaqEnhTrigSensT *trigSensitivity, PFLOAT level, PFLOAT hysteresis, PDWORD channels, DWORD chanCount, char *opStr);

Visual BASIC

VBdaqAdcSetTrigEnhanced&(ByVal handle&, ByRef trigSources&, ByRef gains&, ByRef adcRanges&, ByRef trigSens&, ByRef levels!, ByRef hysteresis!, ByRef chan&, ByVal CHANCOUNT&, ByRef opStr&)

Program References

daqAdcSoftTrig

Also See: daqAdcSetTrig daqAdcSetAcq

Format

daqAdcSoftTrig(handle)

Purpose

daqAdcSoftTrig is used to send a software trigger command to the device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to which the ADC software trigger is to be applied

Parameter Values:

handle: obtained from the dagOpen function

Returns

DerrNoError No error

Function Usage

The daqAdcSoftTrig function is a software trigger that can be used to initiate either a scan or an acquisition from a program after configuring the software trigger as the trigger source. This function may only be used if the trigger source for the acquisition has been set to DatsSoftware with the daqAdcSetTrig function.

daqAdcSoftTrig will override the DatsSoftwareAnalog, DatsDigPattern, and DatsCounter triggers as set by the daqSetTriggerEvent function on some devices. See daqSetTriggerEvent for more details.

Prototypes

C/C++

daqAdcSoftTrig(DaqHandleT handle);

Visual BASIC

VBdaqAdcSoftTrig&(ByVal handle&)

Program References

DQADCEX02.CPP, DQADCEX07.CPP

daqAdcTransferBufData

Also See: daqAdcTransferSetBuffer, daqAdcTransferGetStat, daqSetTimeout

Format

daqAdcTransferBufData(handle, buf, scanCount, bufMask, retCount)

Purpose

daqAdcTransferBufData requests a transfer of scanCount scans from the driver allocated acquisition buffer (driver buffer) to the specified linear data retrieval buffer (buf). The driver buffer is configured with the daqAdcTransferSetBuffer function.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which the ADC buffer
		should be retrieved
buf	PWORD	Pointer to an application-supplied buffer in which to
		place the buffered data
scanCount	DWORD	Number of scans to retrieve from the acquisition buffer
bufMask	DaqAdcBufferXferMask	A mask-defining operation depending on the current
		state of the acquisition buffer
retCount	PDWORD	A pointer to the total number of scans returned, if any

Parameter Values

handle: obtained from the dagOpen function

- buf: must be a valid pointer to memory whose size is at least equal to:
 - [(scanCount) * (the channel count) * (the sample size, normally 2 bytes)]
- scanCount: valid values are 1 to length of the driver buffer (see daqAdcTransferSetBuffer
 function)
- bufMask: see table below
- retCount: a valid pointer to a long integer variable (4 bytes) in which the total number of scans returned (from 0 to scanCount) will be stored upon return of this function

Parameter Type Definitions:

bufMask-(DaqAdcBufferXferMask)		
Definition	Description	
DabtmOldest	Retrieve oldest unread scans from driver buffer	
DabtmNewest	Retrieve newest unread scans from driver buffer	
DabtmWait	Wait for requested amount of data to become available	
DabtmRetAvail	Return immediately with whatever data is available	
DabtmNoWait	Return immediately, only retrieve if requested data is available	
DabtmRetNotDone	Return immediately if still active	

Function Usage

Data Retrieval Buffer

Upon completion of this function, the data retrieval buffer (buf) contains the requested data from the driver buffer (if the data was retrieved – see the "Data Retrieval Modes" section below). The buffer must be allocated by the application prior to calling this function. The diagram below illustrates the path of data transfer:

The scanCount parameter defines the number of scans to be retrieved (or the length of the data retrieval buffer in scans). The size of a scan is determined by the total number of channels in the scan group configuration (see the daqAdcSetScan function for further information on scan group configuration). Therefore the size of the data retrieval buffer to be allocated (in bytes) should be no smaller than:

scanCount * scan size (number of channels) * sample size (normally 2 bytes)

If using packed mode with a WaveBook/512, the above calculation should be multiplied by ³/₄ to determine actual buffer allocation size required.

Data Retrieval Modes

The following values for the bufMask parameter set how recent the transferred data is and whether or not it remains in the buffer after transfer:

DabtmOldest – This value specifies that the specified number of the earliest scans be retrieved from the driver buffer. After they have been transferred, they will be removed from the buffer.

DabtmNewest – This value specifies that the specified number of the most recent scans be retrieved from the driver buffer. These scans will remain in the buffer after transfer.

The following values can be set concurrently with the values above. They specify the timing of the retrieval and the amount of data to transfer from the driver buffer:

DabtmWait – Instructs the function to wait until the requested number of scans (scanCount) are available in the driver-allocated acquisition buffer. When the requested number of scans are available, the function will return with retCount set to scanCount (the number of scans requested). Retrieved data will be returned in the memory referred to by the buf parameter. Returns if the daqSetTimeout value is exceeded.

DabtmNoWait – Instructs the function to return immediately if the specified number of scans (scanCount) are not available when the function is called. If the entire amount requested is not available, the function will return with no data and retCount will be set to 0. If the requested number of scans are available in driver buffer, the function will return with retCount set to scanCount (the number of scans requested). Retrieved data will be returned in the memory referred to by the buf parameter.

DabtmRetAvail – Instructs the function to return immediately, with any scans that are available in the driver-allocated acquisition buffer. The retCount parameter will return the total number of scans retrieved. **retCount** can return anything from 0 to scanCount (the number of scans requested). The retrieved data will be returned in the memory referred to by the buf parameter.

DabtmRetNotDone – Instructs the function to return immediately if the acquisition is still active without retrieving any data. If the acquisition is still active, the retCount parameter will return 0. If the acquisition is complete, then retCount can return anything from 0 to scanCount (the number of scans requested). The retrieved data will be returned in the memory referred to by the buf parameter.

Returns

DerrNoError No error

Prototypes

C/C++

daqAdcTransferBufData(DaqHandleT handle, PWORD buf, DWORD scanCount, DaqAdcBufferXferMask bufMask, PDWORD retCount);

Visual BASIC

VBdaqAdcTransferBufData(ByVal handle, buf%, ByVal scanCount&, ByVal bufMask&, retCount&);

Program References

Also See: daqAdcTransferSetBuffer, daqAdcTransferStart, daqAdcTransferStop, daqAdcSetDiskFile

Format

daqAdcTransferGetStat(handle, active, retCount)

Purpose

daqAdcTransferGetStat retrieves the current state of an acquisition transfer, and can be used to initiate transfers to the disk.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which ADC transfer status is to be retrieved
active	PDWORD	A pointer to the transfer-state flags in the form of a bit mask
retCount	PDWORD	A pointer to the total number of ADC scans acquired (or available) in
		the current transfer

Parameter Values

handle: obtained from the dagOpen function

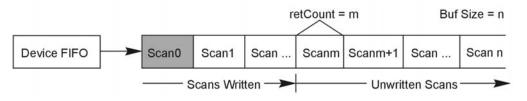
- active: a valid pointer to a double word variable (4 bytes) in which the acquisition and transfer status flags will be stored upon return of this function; see table below for flag values
- retCount: a valid pointer to a long integer variable (4 bytes) in which the total number of scans transferred will be stored (0 to scanCount) upon return of this function

Parameter Type Definitions

active

accive	
Definition	Description
DaafAcqActive	An acquisition is active; the trigger may or may not yet have occurred but the acquisition has at least been armed
DaafAcqTriggered	The acquisition has been triggered, and post-trigger data is now being collected
DaafTransferActive	A buffer transfer is active; an acquisition may or may not be active but a buffer transfer has been enabled

Returns


DerrNoError No error

Function Usage

Data Transfer Progress

The value that the retCount parameter returns depends upon the buffer management mode selected (see daqAdcTransferSetBuffer function for more information on buffer allocation modes):

User Buffer Mode (DatmUserBuf) – The retCount parameter will return the total amount of data written (in scans) to the user allocated buffer(s) during the duration of the acquisition. The following diagram illustrates how retCount is determined:

After the device's FIFO has written m scans to a linear user allocated buffer, retCount equals m. The current data write position (in scans) within the buffer is:

retCount *mod* scanCount

where the operation *mod* is defined as the integer remainder of performing an integer divide of retCount by scanCount. The scanCount parameter is set by the daqAdcTransferSetBuffer function.

Nete! If pre-trigger scan data has been configured (see daqAdcSetAcq), retCount will not return available pre-trigger scans until the acquisition has been triggered.

Driver Buffer Mode (DatmDriverBuf) – The retCount parameter will return the total number of unread scans in the driver allocated circular buffer. In this case, the retCount parameter represents the amount of data that is currently available to be retrieved from the driver buffer. See daqAdcTransferBufData for more info on retrieving data from the driver buffer.

Example Acquisition States

The following table shows a number of different acquisition state combinations. These scenarios are representative of some typical acquisition states but do not necessarily represent all of the possible states. The table assumes a user-buffer mode with total scan count of 100000 scans.

States (active)	Progress (retCount)	Description
DaafAcqActive + DaafAcqTriggered + DaafTransferActive	10,112	The acquisition is active and has been triggered and is currently collecting post-trigger data. A transfer to buffer is also active and a total of 10112 scans have been collected so far.
DaafAcqActive + DaafTransferActive	0	An acquisition has been armed but has not yet been triggered. If pre- trigger data collection has been configured (see daqAdcSetAcq), then pre-trigger data may be being collected (retCount will not return available pre-trigger scan counts until the trigger has occurred).
DaafTransferActive	0	A transfer has been configured and started (with the functions daqAdcTransferSetBuffer and daqAdcTransferStart), but the acquisition has not yet been armed. <i>The acquisition needs to be armed using</i> daqAdcArm.
DaafAcqActive + DaafAcqTriggered	10,112	The acquisition is active and has been triggered, but no transfer is currently active. A total of 10112 scans have been collected so far. This condition will normally only occur if transfers are performed with linear buffers while an acquisition is ongoing. <i>This state represents a possible loss of data if a transfer is not activated before the device overruns its internal buffering.</i>
DaafAcqTriggered + DaafTransferActive	98,000	An acquisition has been triggered, but is no longer active. A transfer is currently active. This sometimes will occur at the end of an acquisition if the acquisition is complete but data is still being transferred from the device.
DaafAcqArmed	0	The acquisition has been armed, but no transfer is currently active. This situation may result in loss of data unless the application initiates a transfer before the trigger occurs and the device overruns its internal buffering.
DaafAcqTriggered	100,000	The acquisition has triggered and has completed. The transfer is not active and 10000 scans have been collected. So, both the acquisition and the transfer are complete.

Prototypes

C/C++

daqAdcTransferGetStat(DaqHandleT handle, PDWORD active, PDWORD retCount);

Visual BASIC

VBdaqAdcTransferGetStat&(ByVal handle&, active&, retCount&)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DBK04EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK53_54EX.CPP, DAQEX.FRM (VB)

daqAdcTransferSetBuffer

Also See: daqAdcTransferStart, daqAdcTransferStop, daqAdcTransferGetStat, daqAdcSetAcq, dagAdcTransferBufData

Format

daqAdcTransferSetBuffer(handle, buf, scanCount, transferMask)

Purpose

daqAdcTransferSetBuffer configures transfer buffers for acquired data, and can also be used to configure the specified user- or driver-allocated buffers for subsequent acquisition transfers.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which an ADC transfer is to be
		performed
buf	PDWORD	Pointer to the buffer for which the acquired data is to be
		placed
scanCount	DWORD	The total length of the buffer (in scans)
transferMask	DWORD	Configures the buffer transfer mode

Parameter Values

handle: obtained from the dagOpen function

buf: must be a valid pointer to memory whose size is at least:

(scanCount) * scan size * 2 (the sample size, normally 2 bytes)

scanCount: valid values for buffer length are 1 to 4,294,967,295 scans, however, memory limitaions apply transferMask: see table below

Parameter Type Definitions

transferMask	
Definition	Description
DatmCycleOn	Defines the buffer as a circular buffer
DatmCycleOff	Defines the buffer as a linear buffer
DatmUpdateSingle	Defines the update mode as single sample
DatmUpdateBlock	Defines the update mode as block update
DatmDriverBuf	Causes the driver to allocate the acquisition transfer buffer as a circular buffer
DatmUserBuf	Specifies a user-allocated and managed acquisition transfer buffer
DatmIgnoreOverruns	Ignores buffer overruns. Upon a buffer wrap, no error will be returned.

Returns

DerrNoError No error

Function Usage

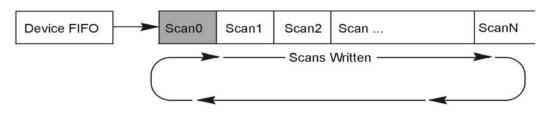
Transfer Buffer Location

The buf parameter is the address of the acquisition transfer buffer allocated by the application. If the application is supplying the buffer then this value must be an address to an adequately allocated buffer.

Transfer Buffer Length

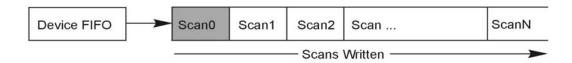
The scanCount parameter is the total length of the transfer buffer in scans. The size of a scan is determined by the total number of channels in the scan group configuration (see daqAdcSetScan and daqAdcSetMux for further information on scan group configuration). Therefore, the buffer size to be allocated (in bytes):

scanCount * scan size (number of channels) * sample size (normally 2 bytes)



If using packed mode with a WaveBook/512, the above calculation should be multiplied by ³/₄ to determine actual buffer allocation size required.

Transfer Buffer Settings


The character of the transfer buffer can be configured via the transferMask parameter. This parameter is a bit mask parameter--it can take on a number of settings, each dependant on how the values are joined logically with either OR or AND (see the "Mask and Flag Definitions" section). Among other things, the transferMask parameter specifies the update, layout/usage, and allocation modes of the buffer. The parameter's possible values are defined as follows:

DatmCycleOn – This parameter value defines the buffer as a circular buffer in buffer-cycle mode. This allows the transfer to continue when the end of the transfer buffer is reached by wrapping the transfer of acquisition data back to the beginning of the buffer, as shown in the diagram below.

In the circular buffer mode, the acquisition transfer buffer will continue to be wrapped until the post-trigger count has been reached (specified by daqAdcSetAcq) or the transfer/acquisition is halted by the application (with the functions daqAdcTransferStop and daqAdcDisarm).

DatmCycleOff(default) – This parameter value defines the buffer as a linear buffer. This causes the transfer to continue to the end of the transfer buffer, at which point it will terminate.

In the linear buffer mode, no more data will be transferred once the end of the buffer has been reached, regardless of whether an acquisition is still active. If using this mode, the application needs to ensure that another buffer is allocated if the acquisition is going to continue beyond the end of the transfer buffer.

DatmUpdateSingle – This value specifies the update mode as a single sample. This setting allows the acquisition transfer buffer to be updated for each sample collected during the acquisition. Compared to the block mode, this setting provides a higher degree of real-time transfer buffer updating at the expense of slower aggregate data throughput rates.

DatmUpdateBlock (default) – This value specifies the update mode as block. This mode allows the acquisition transfer buffer to be updated in blocks of acquired data. The size of the data block depends upon the product in use (see the table below). The block update setting allows faster transfer rates than DatmUpdateSingle mode and therefore should be used when aggregate throughput performance is paramount.

Product	Block Size
DaqBooks	2048 Samples (older versions of these products had a block size of 256)
TempBooks	2048 Samples (older versions of these products had a block size of 256)
DaqBoard (ISA)	2048 Samples (older versions of these products had a block size of 256)
Daq PC Cards	256 Samples
WaveBooks	2048 Samples
DaqBoard/500 Series DaqBoard/1000 Series DaqBook/2000 Series DaqLab/2000 Series DaqScan/2000 Series DaqBoard/2000 Series cPCI DaqBoard/2000c Series	Variable

DatmDriverBuf – This parameter value specifies that the driver allocate and manage the acquisition transfer buffer as a circular buffer whose length is determined by the scanCount parameter (in the current scan group configuration). In this case, the driver will allocate the buffer as a circular buffer so that the application need not set the DatmCycleOff option. Also, since the driver is allocating the buffer, the buf parameter will be ignored with this setting. This option allows the driver to allocate and manage the circular acquisition transfer buffer rather than placing the burden of buffer management on the application. This mode requires the use of the daqAdcTransferBufData function to access and retrieve the acquired data from the driver-allocated acquisition transfer buffer from over-running. The appropriate setting for scanCount parameter is highly dependent upon the nature of the application and the frequency at which the data will be retrieved (using daqAdcTransferBufData) from the driver allocated transfer buffer. If the interval between data retrievals is large, the scanCount parameter may need to be increased accordingly. If a buffer overrun condition occurs, the error will be posted and returned by the next invocation of the daqAdcTransferBufData function.

DatmUserBuf(default) - The DatmUserBuf option specifies a user-allocated and managed acquisition transfer buffer. Here, the driver will write acquired data to the user-allocated buffer, but the management of the buffer must be performed by the application. If using this mode, there are a few things to keep in mind:

The specified buf parameter must point to memory which has been allocated by the application prior to calling this function.

The allocated buffer must be large enough to hold the number of acquisition scans as determined by the current scan group configuration (as described earlier).

The total amount of data (in scans) written to the user-allocated transfer buffer during the acquisition is determined by the retCount parameter (which is returned by the daqAdcTransferGetStat function). The current data write position within the buffer is:

retCount mod scanCount

where mod is defined as the integer remainder of performing an integer divide of retCount by scanCount. Detection of a buffer overrun condition is the responsibility of the application.

If using a linear buffer (DatmCycleOff) and the acquisition is expected to continue past the end of the allocated buffer size, a new buffer must be allocated and configured using this function in a timely manner to avoid loss of data (as would be the case in an alternating or "ping-pong" buffer approach).

Typical Transfer Buffer Settings

The following table shows a set of are typical transfer buffer settings; it assumes scan group size of 4 channels and sample size of 2 bytes.

Desired Buffer	buf	scanCount	transferMask
Application allocated linear buffer of 50,000 scans updated on every sample	App pointer to memory (size = $50,000 \text{ x 4 x 2}$ = $400,000 \text{ bytes}$)	50,000	DatmCycleOff + DatmUpdateSingle + DatmUserBuf
Application allocated linear buffer of 100,000 scans updated by block	App pointer to memory (size = $100,000 \times 4 \times 2$ = $800,000$ bytes)	100,000	DatmCycleOff + DatmUpdateBlock + DatmUserBuf
Application allocated circular buffer of 40,000 scans updated on every sample	App pointer to memory (size = $40000 \times 4 \times 2$ = $320,000$ bytes)	40,000	DatmCycleOn + DatmUpdateSingle + DatmUserBuf
Application allocated circular buffer of 200,000 scans updated by block	App pointer to memory (size = $200,000 \times 4 \times 2$ = $1,600,000$ bytes)	200,000	DatmCycleOn + DatmUpdateBlock + DatmUserBuf
Driver allocated circular buffer of 40,000 scans updated on every sample	NULL (Driver allocates = 40,000 x 4 x 2 = 320,000 bytes)	40,000	DatmUpdateSingle + DatmDriverBuf
Driver allocated circular buffer of 200,000 scans updated by block	NULL (Driver allocates = 200,000 x 4 x 2 = 1,600,000 bytes)	200,000	DatmUpdateBlock + DatmDriverBuf

Prototypes

C/C++

daqAdcTransferSetBuffer(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD transferMask);

Visual BASIC

VBdaqAdcTransferSetBuffer&(ByVal handle&, buf%, ByVal scanCount&, ByVal transferMask&)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX05.CPP, DAQADCEX07.CPP, DBK04EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK53_54EX.CPP, DAQEX.FRM (VB)

daqAdcTransferStart

Also See: daqAdcTransferSetBuffer, daqAdcTransferGetStat, daqAdcTransferStop

Format

daqAdcTransferStart(handle)

Purpose

daqAdcTransferStart initiates an ADC acquisition transfer.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which to initiate an ADC transfer

Parameter Values

handle: obtained from the dagOpen function

Returns

DerrNoError No error

Function Usage

The transfer will be performed under the current active acquisition. If no acquisition is currently active, the transfer will not initiate until an acquisition becomes active (via the daqAdcArm function). The transfer will be characterized by the current settings for the transfer buffer. The transfer buffer is configured via the daqAdcTransferSetBuffer function.--This buffer configuration must be done before calling the daqAdcTransferStart function.

Prototypes

C/C++

daqAdcTransferStart(DaqHandleT handle);

Visual BASIC

VBdaqAdcTransferStart&(ByVal handle&)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DBK04EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK53_54EX.CPP, DAQEX.FRM (VB)

daqAdcTransferStop

Also See: daqAdcTransferSetBuffer, daqAdcTransferGetStat, daqAdcTransferStart

Format

daqAdcTransferStop(handle)

Purpose

daqAdcTransferStop stops a current ADC buffer transfer, if one is active.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the ADC transfer will be stopped

Parameter Values

handle: obtained from the dagOpen function

Returns

DerrNoError No error

Function Usage

The current transfer will be halted and no more data will transfer into the transfer buffer. Though the transfer is stopped, the acquisition will remain active. Transfers can be re-initiated with daqAdcTransferStart after the stop, as long as the current acquisition remains active. The acquisition can be halted by calling the daqAdcDisarm function.

Prototypes

C/C++

daqAdcTransferStop(DaqHandleT handle);

Visual BASIC

VBdaqAdcTransferStop&(ByVal handle&)

Program References

Also See: daqZeroSetup, daqZeroConvert, daqZeroSetupConvert, daqCvtTCSetup, daqCvtTCConvert, daqCvtTCSetupConvert

Format

daqAutoZeroCompensate (zero)

Purpose

daqAutoZeroCompensate will configure the thermocouple linearization functions to automatically perform zero compensation.

Parameter Summary

Parameter	Туре	Description
zero	DaqAutoZeroCompT	If set to DazcAutoZero, will enable auto zero compensation
		in the daqCvtTC functions

Parameter Values

zero: see table below

Parameter Type Definitions

zero-(DaqAutoZeroCompT)	
Definition	Description
DazcNone	Do not include auto-zero compensation in TC conversion.
DazcAutoZero	Apply auto-zero compensation in TC conversion.

Returns

DerrZCInvParam Invalid parameter value DerrNoError No error

Function Usage

Only DaqBook/100 Series, DaqBook/200 Series, Daq PC Cards, DaqBoard (ISA), DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, DaqBoard/2000 series, DaqBoard/1000 Series and cPCI DaqBoard/2000c Series devices connected to a DBK19,DBK52,DBK81-84 or DBK90 expansion card can use the auto-zeroing functions.

Using the daqAutoZeroCompensate function is the easiest way to use zero compensation with the DBK19 or DBK 52. When enabled, the thermocouple conversion functions will require a CJC zero reading and a TC zero reading to precede the actual CJC and TC reading. This can easily be done by configuring the scan group to read:

- channel 17 using the DBK19/DBK52/DBK81-84/DBK90 CJC gain code (CJC zero)
- channel 17 using the gain code of the connected TC (TC zero)
- channel 16 using the DBK19/DBK52/DBK81-84/DBK90 CJC gain code (CJC)
- the thermocouple channels (channels 18 and above) using the gain code of the connected thermocouples.

The real CJC value should be specified (not the offset of the CJC zero) when calling the thermocouple linearization setup functions.

Prototypes

C/C++

daqAutoZeroCompensate(DaqAutoZeroCompT zero);

Visual BASIC

VBdaqAutoZeroCompensate&(ByVal zero&)

Program References

DBK19EX.CPP, DBK52EX.CPP

This page is intentionally blank.

daqCalClearCalTable

Format

daqCalClearCalTable(handle,tableType,factoryKey)

Purpose

daqCalClearCalTable clears the factory calibration table

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which ADC transfer status
		will be retrieved
tableType	DaqCalTableTypeT	Calibration table type used
factoryKey	DWORD	Key to the factory calibration table; manufacturer use.

Parameter Values

handle: obtained from the daqOpen function
tableType: see tableType table below
factoryKey: reserved by manufacturer

Parameter Type Definitions

tableType - DaqCalTableTypeT		
Definition	Description	
DcttFactory	Selects the factory calibration table. The factory calibration table reflects factory calibration	
	constants for the selected device. This is the default setting.	
DcttUser	Selects the user-calibration table. The user-calibration table reflects calibration constants defined	
	by the user or the device's user-calibration application. Refer to the device's calibration	
	documentation for specific settings.	
DcttSelfCal	Self-calibration constants.	

Function Usage

Typically reserved for factory use.

Prototypes

C/C++

daqCalClearCalTable(DaqHandleT handle, DaqCalTableTypeT tableType, DWORD
factoryKey);

Visual BASIC

VBdaqCalClearCalTable&(ByVal handle&, ByVal tableType&, ByVal factoryKey&)

Returns

DerrNoError No error

Format

daqCalConvert(handle, counts, scans)

Purpose

daqCalConvert performs the calibration of one or more scans according to the previously called daqCalSetup function.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to be calibrated
counts	PWORD	Raw data from one or more scans to be calibrated
scans	DWORD	Number of scans of raw data in the counts array

Parameter Values

handle: obtained from the daqOpen function

- counts: a valid pointer to an array of uncalibrated scan data whose size must be at least equal to: [(scans)* scan size * (the sample size, normally 2 bytes)]
- scans: valid values range from 1 to 4,294,967,295; however, memory limitations may apply

Returns

DerrZCInvParam	Invalid parameter value
DerrNoError	No error

For more details on error messages refer to the Daq Error Table.

Function Usage

The daqCalConvert function will modify the array of data passed to it. The counts parameter specifies a pointer to an array of the raw A/D counts retrieved during an acquisition. Upon return, the counts array will hold calibrated data. The scans parameter indicates the number of scans (as defined by the current scan group configuration) in the acquisition.

This function should be preceded by the dagCalSetup function.

Prototypes

C/C++

daqCalConvert(DaqHandleT handle, PWORD counts, DWORD scans);

Visual BASIC

VBdaqCalConvert&(ByVal handle&, counts%, ByVal scans&)

Program References

Also See: Other dagCal commands

Format

```
daqCalGetCalEquation(handle, chanConfig, tableType, calEquation)
```

Purpose

daqCalGetCalEquation retrieves the calibration equation from the currently selected calibration table chosen by the daqCalSelectCalTable function.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which ADC transfer status
		will be retrieved
chanConfig	DaqCalChanConfigT	Configuration info which includes channel and gain.
tableType	DaqCalTableTypeT	Calibration table type to use
calEquation	DaqCalEquationType	Defines the equation type to use

Parameter Values

handle: obtained from the daqOpen function chanConfig: channel configuration information (see chanConfig table, below) tableType: see tableType table below calEquation: see DaqCalEquationType below

Parameter Type Definitions

chanConfig - DaqCalChanConfigT	
Definition	Description
DaqCalType	dctAdc = 0; dctDac = 1; dctTrigger = 2; dctVref = 3; dctTime = 4 (for time stamp)
channel	Channel number to which the equation will be applied
gain	Channel gain
flags	Channel flags, as applicable
extendedFlags	The Channel's extended flags, as applicable.

tableType - DaqCalTableTypeT		
Definition	Description	
DcttFactory	Selects the factory calibration table. The factory calibration table reflects factory calibration	
	constants for the selected device. This is the default setting.	
DcttUser	Selects the user-calibration table. The user-calibration table reflects calibration constants defined	
	by the user or the device's user-calibration application. Refer to the device's calibration	
	documentation for specific settings.	
DcttSelfCal	Self-calibration constants.	

calEquation - DaqCalEquationType		
Definition	Description	
dcetConstant	= 0; used to select constant	
dcetLinear	= 1; used to select linear slope and offset	
dcetSplitLinear	= 2; slope positive, slope negative; offset	
dcetNonZeroSplitLinear	= 3; slope positive, slope negative, offset positive, offset negative; split	
dcetTime	= 4; time stamp: year, month, day, hour, minute, second, milli-second	

Function Usage

To retrieve an existing calibration equation.

Prototypes

C/C++

daqCalGetCalEquation(DaqHandleT handle,DaqCalChanConfigT pChanConfig, DaqCalTableTypeT tableType, DaqCalEquationT CalEquation);

Visual BASIC

VBdaqCalGetCalEquation& (ByVal handle&, chanConfig As DaqCalChanConfigT, ByVal tableType&, calEquation As DaqCalEquationT)

Returns

DerrNoError No error

daqCalGetConstants

Also See: daqCalSetConstants, daqCalSelectCalTable, daqCalSelectInputSignal, daqCalSaveConstants

Format

```
daqCalGetConstants(handle, channel, gain, range, gainConstant,
offsetConstant)
```

Purpose

daqCalGetConstants retrieves the calibration constants from the currently selected calibration table chosen by the daqCalSelectCalTable function.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which ADC transfer status will be retrieved
channel	DWORD	Channel number to which the calibration settings will be applied
gain	DaqAdcGain	Gain range over which the calibration settings will be applied
range	DaqAdcRangeT	A/D input range over which the calibration settings will be applied
gainConstant	PWORD	Pointer to the gain value for the current entry
offsetConstant	PSHORT	Pointer to the offset value for the current entry

Parameter Values

handle: obtained from the daqOpen function channel: a valid channel for the device gain: see ADC Gain Definition table for gain parameter definitions range: see table below gainConstant: valid pointer to a word variable (2 bytes) in which the gain constant will be stored upon return from this function (valid gain constant range is from 0 to 65,535) offsetConstant: valid pointer to a short integer variable (2 bytes) in which the offset constant will be stored upon return from this function (valid offset constant range is from -32,768 to 32,767)

Parameter Type Definitions

adcRanges-(DaqAdcRangeT)		
Definition Description		
DarUni0to10V	Sets acquisition range as unipolar from 0 to +10 Volt range	
DarBiMinus5to5V	Sets acquisition range as bipolar from -5 to +5 Volt range	
DarUniPolarDE	Sets acquisition range as unipolar differential	
DarBiPolarDE	Sets acquisition range as bipolar differential	
DarUniPolarSE	Sets acquisition range as unipolar single-ended	
DarBiPolarSE	Sets acquisition range as bipolar single-ended	

Returns

DerrNoError No error

Function Usage

Selecting the Calibration Constants to Retrieve

Before calling this function, the daqOpen function should be used to open the device from which the calibration constants will be retrieved, and the daqCalSelectCalTable function should be used to select the calibration table from which the calibration constants will be retrieved. The internal tables are organized into gain and calibration entries according to the channel, gain range and A/D range capabilities of the device. The following need to be selected for each calibration gain and offset constant entries to be retrieved:

- The channel parameter should be set to the desired channel.
- The gain parameter should be set to the desired gain setting for the selected channel.
- The range parameter should be set to the desired range for the gain and channel selection.

Retrieving the Calibration Constants

The gains and offsets constants for the handle, channel, gain and range entries selected are set for the device and stored in the memory pointed to by the corresponding parameters gainConstant and offsetConstant parameters respectively. The values returned are stored in a 16-bit data word which applies to the current settings for the selected table entry. These values need to be calculated and set by the calibration application according to the methods described below.

Interpreting Calibration Constant Values

These calibration constants are gains and offsets that are applied to the input data. After the data comes in, it is multiplied by the gain, and then the offset is added to it. The resulting data has been converted from raw A/D data to calibrated data. Each channel, gain, and bipolar/unipolar range setting has a different pair of gain and offset values.

As mentioned above, the first three parameters of the daqCalSetConstants function specify which set of constants are to be changed. The last two parameters are the actual constants. These constants are in a particular binary format. The gain constant is 32,768 times the gain. For a gain of x1, the gain constant is 32,768 or 0x8000. The maximum gain is approximately x2 (65,535 / 32,768), and the minimum gain is x 0 (0 / 32,768). The offset (a left-justified signed 12-bit number) is added to the final result. A single least-significant bit has an integer value of 16 or 0x0010. Setting the calibration constants affects subsequent acquisitions until another daqOpen is performed. After daqOpen, the original calibration constants are re-read from the NVRAM in the WaveBook and expansion chassis; then, the working copy as set by daqCalSetConstants is overwritten.

Prototypes

C/C++

daqCalGetConstants(DaqHandleT handle, DWORD channel, DaqAdcGain gain, DaqAdcRangeT range, PWORD gainConstant, PSHORT offsetConstant);

Visual BASIC

VBdaqCalGetConstants(ByVal handle&, ByVal channel, ByVal gain, ByVal range, ByRef gainConstant, ByRef offsetConstant);

Program References

Format

Also See: Other daqCal commands

daqCalPerformSelfCal(handle,chanConfig,calFlags)

Purpose

daqCalPerformSelfCal selects a channel for self-calibration.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which ADC transfer status
		will be retrieved
chanConfig	DaqCalChanConfigT	Configuration info which includes channel and gain.
calFlags	DaqCalSelfCalFlags	Calibrates all available options.

Parameter Values

handle: obtained from the daqOpen function chanConfig: channel configuration information (see chanConfig table, below) calFlags: DcsfCalibrateAll = 0x01, self-calibration of all available options

Parameter Type Definitions

chanConfig - DaqCalChanConfigT		
Definition	Description	
DaqCalType	dctAdc = 0; dctDac = 1; dctTrigger = 2; dctVref = 3; dctTime = 4 (for time stamp)	
channel	Channel number to which the equation will be applied	
gain	Channel gain	
flags	Channel flags, as applicable	
extendedFlags	The Channel's extended flags, as applicable.	

Function Usage

Used to perform a self-calibration of all available options via the DcsfCalibrateAll flag.

Prototypes

C/C++

daqCalPerformSelfCal(DaqHandleT handle, DaqCalChanConfigT chanConfig, DaqCalSelfCalFlags calFlags)

Visual BASIC

```
VBdaqCalPerformSelfCal(ByVal handle&, ByRef chanConfig As DaqCalChanConfigT, ByVal calFlags As DaqCalSelfCalFlags)
```

Returns

DerrNoError No error

daqCalSaveCalTable

Also See: Other daqCal commands

Format

daqCalSaveCalTable(handle,tableType,factoryKey)

Purpose

daqCalSaveCalTable saves the calibration table

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which ADC transfer status will
		be retrieved
tableType	DaqCalTableTypeT	Calibration table type
factoryKey	DWORD	Key to the factory calibration table. Manufacturer's use.

Parameter Values

handle: obtained from the daqOpen function
tableType: see tableType table below
factoryKey: reserved for manufacturer

Parameter Type Definitions

tableType - DaqCalTableTypeT			
Definition	efinition Description		
DcttFactory	Selects the factory calibration table. The factory calibration table reflects factory calibration		
	constants for the selected device. This is the default setting.		
DcttUser	Selects the user-calibration table. The user-calibration table reflects calibration constants defined		
	by the user or the device's user-calibration application. Refer to the device's calibration		
	documentation for specific settings.		
DcttSelfCal	Self-calibration constants.		

Function Usage

Used to save the calibration table.

Prototypes

C/C++

```
daqCalSaveCalTable(DaqHandleT handle, DaqCalTableTypeT tableType,
DWORD factoryKey);
```

Visual BASIC

VBdaqCalSaveCalTable&(ByVal handle&, ByVal tableType&, ByVal factoryKey&)

Returns

DerrNoError No error

daqCalSaveConstants

Also See: daqCalGetConstants, daqCalSetConstants, daqCalSelectInputSignal, daqCalSelectCalTable

Format

daqCalSaveConstants(handle, channel)

Purpose

daqCalSaveConstants saves the current calibration table selected by the daqCalSelectCalTable function.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the calibration constants will be saved
channel	DWORD	Channel whose current calibration settings will be saved

Parameter Values

handle: obtained from the daqOpen function channel: a valid channel for the device

Returns

DerrNoError No error

Function Usage

Saving the Current Calibration Table

Current calibration constants can be updated or modified with the daqCalSetConstants function. The working calibration table should only be saved after all desired calibration constants have been updated for the device.

daqCalGetConstants retrieves the calibration constants from the currently selected calibration table chosen by the daqCalSelectCalTable function for the device.

Before calling this function, the daqOpen function should be used to open the device whose calibration constants are being saved, and the daqCalSelectCalTable function should be used to select the calibration table from which the calibration constants are being saved. The internal tables are organized into gain and calibration entries according to the channel, gain range and A/D range capabilities of the device.

Prototypes

C/C++

daqCalSaveConstants(DaqHandleT handle, DWORD channel);

Visual BASIC

VBdaqCalSaveConstants(ByVal handle&, ByVal channel)

Program References

daqCalSelectCalTable

Also See: daqCalGetConstants, daqCalSetConstants, daqCalSelectInputSignal, daqCalSaveConstants

Format

daqCalSelectCalTable(handle, tableType)

Purpose

daqCalSelectCalTable selects the calibration table source for the device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which ADC transfer status is to be
		retrieved
tableType	DaqCalTableTypeT	Calibration table type to use

Parameter Values

handle: obtained from the daqOpen function
tableType: see table below

Parameter Type Definitions

tableType	- DaqCalTableTypeT
Definition	Description
DcttFactory	Selects the factory calibration table. The factory calibration table reflects factory calibration constants for the selected device. This is the default setting.
DcttUser	Selects the user-calibration table. The user-calibration table reflects calibration constants defined by the user or the device's user-calibration application. Refer to the device's calibration documentation for specific settings.
DcttSelfCal	Self-calibration constants.

Returns

DerrNoError No error

Function Usage

Selecting the Calibration Table

The daqCalSelectCalTable function should be used to set the current calibration table for the device. Currently, there are two valid calibration table types which can be selected with the tableType parametereither the factory calibration table can be selected with the DcttFactory value, or a user-defined calibration table can be selected with the DcttUser value. The current calibration table at any time will be set to the calibration table last selected during the current device session.

Prototypes

C/C++

daqCalSelectCalTable(DaqHandleT handle, DaqCalTableTypeT tableType);

Visual BASIC

VBdaqCalSelectCalTable(ByVal handle&, ByVal tableType)

Program References

daqCalSelectInputSignal

Also See: daqCalGetConstants, daqCalSetConstants daqCalSelectCalTable, daqCalSaveConstants

Format

daqCalSelectInputSignal(handle, input)

Purpose

daqCalSelectInputSignal selects of the input signal source for user calibration.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which the ADC transfer status will be retrieved
input	DaqCalInputT	Signal source to use for calibration input

Parameter Values

handle: obtained from the daqOpen function
input: see table below

Parameter Type Definitions

input-(DaqCalInputT)		
Definition	Description	
DciNormal	External signal from device input connector(s)	
DciCalGround	Internal calibration ground signal	
DciCal5V	Internal 5 V calibration signal	
DciCal500mV	Internal 500 mV calibration signal	

Returns

DerrNoError No error

Function Usage

Selecting the Calibration Input Signal Source

The input signal source is specified by the input parameter. The input signal selection allows the calibration application to select the signal source from which the channels can be calibrated for a given calibration session. Prior to calling this function, the daqOpen function should be used to open the device to be calibrated, and the daqCalSelectCalTable function should specify which calibration table will be used to perform the calibration .

Prototypes

C/C++

daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);

Visual BASIC

VBdaqCalSelectInputSignal(ByVal handle&, inputSignal&)

Program References

Format

daqCalSetCalEquation(handle,chanConfig,tableType, calEquation)

Purpose

daqCalSetCalEquation defines and sets the calibration equation

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which ADC transfer status
		will be retrieved.
chanConfig	DaqCalChanConfigT	Configuration info which includes channel and gain.
tableType	DaqCalTableTypeT	Calibration table type to use.
pCalEquation	DaqCalEquationType	Defines the equation type to use

Parameter Values

handle: obtained from the daqOpen function chanConfig: channel configuration information (see chanConfig table, below) tableType: see tableType table below calEquation: see DaqCalEquationType below

Parameter Type Definitions

chanConfig - DaqCalChanConfigT			
Definition	Description		
DaqCalType	dctAdc = 0; dctDac = 1; dctTrigger = 2; dctVref = 3; dctTime = 4 (for time stamp)		
channel	Channel number to which the equation will be applied		
gain	Channel gain		
flags	Channel flags, as applicable		
extendedFlags	The Channel's extended flags, as applicable.		

tableType - DaqCalTableTypeT			
Definition	Description		
DcttFactory	Selects the factory calibration table. The factory calibration table reflects factory calibration constants for the selected device. This is the default setting.		
DcttUser	Selects the user-calibration table. The user-calibration table reflects calibration constants defined by the user or the device's user-calibration application. Refer to the device's calibration documentation for specific settings.		
DcttSelfCal	Self-calibration constants.		

calEquation - DaqCalEquationType			
Definition	Description		
dcetConstant	= 0; used to select constant		
dcetLinear	= 1; used to select linear slope and offset		
dcetSplitLinear	= 2; slope positive, slope negative; offset		
dcetNonZeroSplitLinear	= 3; slope positive, slope negative, offset positive, offset negative; split		
dcetTime	= 4; time stamp: year, month, day, hour, minute, second, milli-second		

Function Usage

Used to set calibration constants.

Prototypes

C/C++

```
daqCalSetCalEquation(DaqHandleT handle,DaqCalChanConfigT chanConfig,
DaqCalTableTypeT tableType,DaqCalEquationT calEquation);
```

Visual BASIC

VBdaqCalSetCalEquation& (ByVal handle&, chanConfig As DaqCalChanConfigT, ByVal tableType&, calEquation As DaqCalEquationT)

Returns

DerrNoError No error

daqCalSetCalPoints

Also See: Other daqCal commands

Format

daqCalSetCalPoints(handle,chanConfig,calData,tableType)

Purpose

daqCalSetCalPoints sets calibration constants automaticllay after compare true (expected) values to observed values.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which ADC transfer status
		will be retrieved.
chanConfig	DaqCalChanConfigT	Configuration info which includes channel and gain.
calData	DaqCalUserCalDataT	Calibration points (0 to 63)
tableType	DaqCalTableTypeT	Calibration table type to use.

Parameter Values

handle: obtained from the daqOpen function chanConfig: channel configuration information (see chanConfig table, below) calData: see calDataType table tableType: see tableType table below

Parameter Type Definitions

chanConfig - DaqCalChanConfigT			
Definition	Description		
DaqCalType	dctAdc = 0; dctDac = 1; dctTrigger = 2; dctVref = 3; dctTime = 4 (for time stamp)		
channel	Channel number to which the equation will be applied		
gain	Channel gain		
flags	Channel flags, as applicable		
extendedFlags	The Channel's extended flags, as applicable.		

calDataType			
Definition	Description		
dcdtConstant	= 0, global constant		
dcdtLinear	= 1, global linear constant		
dcdtSplitLinear	= 2, global split linear constant		
DaqCalUserCalDataT			
calDataType	As Long		
numCalPoints	As Long		
calPoints	0 to 63 as DaqCalPointT		

tableType - DaqCalTableTypeT		
Definition	Description	
DcttFactory	Selects the factory calibration table. The factory calibration table reflects factory calibration constants for the selected device. This is the default setting.	
DcttUser	Selects the user-calibration table. The user-calibration table reflects calibration constants defined by the user or the device's user-calibration application. Refer to the device's calibration documentation for specific settings.	
DcttSelfCal	Self-calibration constants.	

Function Usage

Calculates and stores constants to calibraration table after comparing true (expected) vlalues to the corresponding measured values.

Prototypes

C/C++

daqCalSetCalPoints(DaqHandleT handle, DaqCalChanConfigT chanConfig, DaqCalUserCalDataT calData, DaqCalTableTypeT tableType);

Visual BASIC

VBdaqCalSetCalPoints&((ByVal handle&, chanConfig As DaqCalChanConfigT, calData As DaqCalUserCalDataT, ByVal tableType&)

Returns

DerrNoError No error

daqCalSetConstants

Also See: daqCalGetConstants, daqCalSelectCalTable, daqCalSelectInputSignal, daqCalSaveConstants

Format

```
daqCalSetConstants(handle, channel, gain, range, gainConstant,
offsetConstant)
```

Purpose

daqCalSetConstants sets the user-accessible calibration constants.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which ADC transfer status will be
		retrieved
channel	DWORD	Channel number for which to apply the calibration settings
gain	DaqAdcGain	Gain range for which to apply the calibration settings
range	DaqAdcRangeT	A/D input range for which to apply the calibration settings
gainConstant	WORD	Gain value to apply
offsetConstant	SHORT	Offset value to apply

Parameter Values

handle: obtained from the daqOpen function channel: a valid channel for the device gain: see ADC Gain Definition table for gain parameter definitions range: see table below gainConstant: valid values range from 0 to 65,535 offsetConstant: valid values range from -32,768 to 32,767

Parameter Type Definitions

range-(DaqAdcRangeT)			
Definition	Description		
DarUni0to10V	Sets acquisition range as unipolar from 0 to +10 Volt range		
DarBiMinus5to5V	Sets acquisition range as bipolar from -5 to +5 Volt range		
DarUniPolarDE	Sets acquisition range as unipolar differential		
DarBiPolarDE	Sets acquisition range as bipolar differential		
DarUniPolarSE	Sets acquisition range as unipolar single-ended		
DarBiPolarSE	Sets acquisition range as bipolar single-ended		

Returns

DerrNoError No error

Function Usage

Selecting the Calibration Constants to Retrieve

Before calling this function, the daqOpen function should be used to open the device from which the calibration constants will be retrieved, and the daqCalSelectCalTable functions should be used to select the calibration table from which the calibration constants will be retrieved. The internal tables are organized into gain and calibration entries according to the channel, gain range and A/D range capabilities of the device. The following need to be selected for each calibration gain and offset constant entries to be retrieved:

- The channel parameter should be set to the desired channel.
- The gain parameter should be set to the desired gain setting for the selected channel.
- The range parameter should be set to the desired range for the gain and channel selection.

Retrieving the Calibration Constants

The gains and offsets constants for the handle, channel, gain and range entries selected are set for the device and stored in the memory pointed to by the corresponding parameters gainConstant and offsetConstant parameters respectively. The values returned are stored in a 16-bit data word which applies to the current settings for the selected table entry. These values need to be calculated and set by the calibration application according to the methods described below.

Interpreting Calibration Constant Values

These calibration constants are gains and offsets that are applied to the input data. After the data comes in, it is multiplied by the gain, and then the offset is added to it. The resulting data has been converted from raw A/D data to calibrated analog data. Each channel, gain, and bipolar/unipolar range setting has a different pair of gain and offset values.

As mentioned above, the first three parameters of the daqCalSetConstants function specify which set of constants are to be changed. The last two parameters are the actual constants. These constants are in a particular binary format. The gain constant is 32,768 times the gain. For a gain of x1, the gain constant is 32,768 or 0x8000. The maximum gain is approximately x2 (65,535 / 32,768), and the minimum gain is x 0 (0 / 32,768). The offset (a left-justified signed 12-bit number) is added to the final result. A single least-significant bit has an integer value of 16 or 0x0010. Setting the calibration constants affects subsequent acquisitions until another daqOpen is performed. After daqOpen, the original calibration constants are re-read from the NVRAM in the WaveBook and expansion chassis; then, the working copy as set by daqCalSetConstants is overwritten.

Prototypes

C/C++

daqCalSetConstants(DaqHandleT handle, DWORD channel, DaqAdcGain gain, DaqAdcRangeT range, WORD gainConstant, SHORT offsetConstant);

Visual BASIC

VBdaqCalSetConstants(ByVal handle&, ByVal channel, ByVal gain, ByVal range, ByVal gainConstant, ByVal offsetConstant);

Program References

Format

```
daqCalSetup(handle, nscan, readingsPos, nReadings, chanType, chanGain,
startChan, bipolar, noOffset)
```

Purpose

daqCalSetup configures the order and type of data to be calibrated.

Parameter Summary

Parameter	Туре	Description	
handle	DaqHandleT	Handle to the device to be calibrated	
nscan	DWORD	Number of channels in a single scan	
readingsPos	DWORD	Position of the readings to be calibrated within the scan	
nReadings	DWORD	Number of readings to calibrate	
chanType	DcalType	Type of channel/board from which the readings to be calibrated are	
		read	
chanGain	DaqAdcGain	Gain setting of the channels to be calibrated	
startChan	DWORD	Channel number of the first channel to be converted	
bipolar	BOOL	If true, the DaqBook/DaqBoard is configured for bipolar readings;	
		if false, it is configured for unipolar readings	
noOffset	BOOL	If true, the offset calibration constant will not be used to calibrate	
		the readings; if false, the offset calibration will be used	

Parameter Values

handle: obtained from the dagOpen function

nscan: the number of channels in the scan group configuration (see daqAdcSetScan)

readingsPos: the position of the channels to calibrate within the scan (see daqAdcSetScan)

nReadings: the number of readings to calibrate from 1 to 4,294,967,295; however, memory limitations may apply

chanType: see table below

chanGain: see ADC Gain Definition table for chanGain parameter definitions

startChan: must be a valid device channel within the scan group definition (see daqAdcSetScan)

bipolar: valid values are either true ($\neq 0$) or false (=0)

noOffset: valid values are either true ($\neq 0$) or false (=0)

Parameter Type Definitions

chanType-(DcalType)			
Definitions	Channel Configuration	Description	
DcalTypeDefault	Any voltage channel	Defines a calibration of main unit or expansion channel voltage	
DcalTypeCJC	Cold Junction Compensation Channel	Defines a calibration of expansion CJC channel for a	
		thermocouple module or card	
DcalTypeBypass	Filter Bypass mode for DBK4	Defines a calibration for DBK4 channel in filter bypass mode	
DcalTypeFilter	Filter Cutoff mode for DBK4	Defines a calibration for DBK4 channel in filter cutoff mode	

The value for the chantype parameter should be set to DcalTypeCJC (1) when calibrating a CJC channel of a thermocouple module or card, and DcalTypeDefault (0) when reading any other channel.

Returns

DerrZCInvParam DerrNoError Invalid parameter value No error

For more details on error messages refer to the Daq Error Table.

Function Usage

The daqCalSetup function configures the calibration of acquisition data. It requires that all data to be calibrated comes from consecutive channels, each configured for the same gain, polarity, and channel type. The calibration itself can be configured to use only the gain calibration constant and not the offset constant-this allows the offset to be removed at runtime using the zero compensation functions. The following list describes how daqCalSetup's parameters configure a data calibration in more detail:

The nscan parameter indicates the number of channels in the scan. (See daqAdcSetScan function for complete details on channel scan group configuration settings).

The readingPos parameter indicates the *position* within the channel scan to begin calibrating--this is different that the startChan parameter, which indicates the beginning *channel* within the channel scan group (see the daqAdcSetScan function for complete details on channel scan group configuration settings).

The nReadings parameter indicates the number of readings to calibrate in the channel scan, starting from the readingPos position.

The chanType parameter is a pointer to an array of length nscan; the value of each element in the array is the channel type for the corresponding channel in the scan configuration.

The chanGain parameter is a pointer to an array of length equal to nscan; the value of each element in the array is the channel gain for the corresponding channel in the scan configuration.

The startChan parameter indicates the *channel number* within the channel scan to begin calibrating—this is different that the readingPos parameter, which indicates the beginning *position* within the channel scan group (see the daqAdcSetScan function for complete details on channel scan group configuration settings).

The bipolar parameter should be true if the device whose data is being calibrated was set to bipolar mode during the acquisition. If the device was set to unipolar mode when the data being calibrated was acquired, this value should be false.

The noOffset parameter should be true if it is desirable to perform a gain constant calibration only. If this value is true, the offset calibration constant will not be used and the calibration will not attempt to adjust for offset errors. If this value is false, then the offset constant calibration will be performed and the calibration process will attempt to adjust the data to reduce offset error.

The daqCalSetup function only configures a data calibration—the actual calibration is performed by the daqCalConvert function. For convenience, daqCalSetupConvert can perform both setup and conversion.

Prototypes

C/C++

daqCalSetup(DaqHandleT handle,DWORD nscan, DWORD readingsPos, DWORD nReadings, DcalType chanType, DaqAdcGain chanGain, DWORD startChan, BOOL bipolar, BOOL noOffset);

Visual BASIC

VbdaqCalSetup&(ByVal handle&, ByVal nscan&, ByVal readingsPos&, ByVal nReadings&, ByVal chanType&, ByVal chanGain&, ByVal startChan&, ByVal bipolar&, ByVal noOffset&)

Program References

Format

```
daqCalSetupConvert(handle, nscan, readingsPos, nReadings, chanType,
chanGain, startChan, bipolar, noOffset, counts, scans)
```

Purpose

daqCalSetupConvert both configures and performs the calibration of the specified data.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to be calibrated
nscan	DWORD	Number of channels in a single scan
readingsPos	DWORD	Position of the readings to be calibrated within the scan
nReadings	DWORD	Number of readings to calibrate
chanType	DcalType	Type of channel/board from which the readings to be calibrated are
		read
chanGain	DaqAdcGain	Gain setting of the channels to be calibrated
startChan	DWORD	Channel number of the first channel to be converted
bipolar	BOOL	If true, the DaqBook/DaqBoard is configured for bipolar readings;
		if false, it is configured for unipolar readings
noOffset	BOOL	If true, the offset calibration constant will not be used to calibrate
		the readings; if false, the offset calibration will be used
counts	PWORD	Raw data from one or more scans
scans	DWORD	Number of scans of raw data in the counts array

Parameter Values

handle: obtained from the daqOpen function

nscan: the number of channels in the scan group configuration (see daqAdcSetScan)

readingsPos: the position of the channels to calibrate within the scan (see daqAdcSetScan)

- nReadings: the number of readings to calibrate from 1 to 4,294,967,295; however, memory limitations may apply
- chanType: see table below
- chanGain: see ADC Gain Definition table for chanGain parameter definitions

startChan: must be a valid device channel within the scan group definition (see daqAdcSetScan)

bipolar: valid values are either true ($\neq 0$) or false (= 0)

- noOffset: valid values are either true ($\neq 0$) or false (=0)
- counts: a valid pointer to an array of uncalibrated scan data whose size must be at least equal to
 (scans * scan size * 2)
- scans: the number of scans to be calibrated from 1 to 4,294,967,295; however, memory limitations may
 apply

Parameter Type Definitions

chanType - DcalType			
Definitions	Channel Configuration	Description	
DcalTypeDefault	Any voltage channel	Defines a calibration of main unit or expansion channel voltage	
DcalTypeCJC	Cold Junction Compensation	Defines a calibration of expansion CJC channel for a	
	Channel	thermocouple module or card.	
DcalTypeBypass	Filter Bypass mode for DBK4	Defines a calibration for DBK4 channel in filter bypass mode	
DcalTypeFilter	Filter Cutoff mode for DBK4	Defines a calibration for DBK4 channel in filter cutoff mode	

The value for the chantype parameter should be set to DcalTypeCJC (1) when calibrating a CJC channel of a thermocouple module or card, and DcalTypeDefault (0) when reading any other channel.

Returns

DerrZCInvParam Inva DerrNoError No e

Invalid parameter value No error

For more details on error messages refer to the Daq Error Table.

Function Usage

The daqCalSetupConvert function will setup the calibration in the same manner as the daqCalSetup function and will perform the calibration in the same manner as the daqCalConvert function:

Like the daqCalSetup function, this function requires that all data to be calibrated comes from consecutive channels, each configured for the same gain, polarity, and channel type. The calibration can be configured to use only the gain calibration constant and not the offset constant--this allows the offset to be removed at runtime using the zero compensation functions.

Refer to the dagCalSetup function for a description of the counts, nscan, readingPos, nreadings, chanType, chanGain, startChan, bipolar and noOffset parameters.

Like the daqCalConvert function, this function will modify the array of data passed to it. The counts parameter specifies a pointer to an array of the raw A/D counts retrieved during an acquisition. Upon return, the counts array will hold calibrated data. The scans parameter indicates the number of scans (as defined by the current scan group configuration) in the acquisition.

Prototypes

C/C++

daqCalSetupConvert(DaqHandleT handle,DWORD nscan, DWORD readingsPos, DWORD nReadings, DcalType chanType, DaqAdcGain chanGain, DWORD startChan, BOOL bipolar, BOOL noOffset, PWORD counts, DWORD scans);

Visual BASIC

VBdaqCalSetupConvert&(ByVal handle&, ByVal nscan&, ByVal readingsPos&, ByVal nReadings&, ByVal chanType&, ByVal chanGain&, ByVal startChan&, ByVal bipolar&, ByVal noOffset&, counts%, ByVal scans&)

Program References

DBK81EX.CPP, DBK82_83EX.CPP, DBK90EX.CPP

Format

daqClose(handle)

Purpose

daqClose is used to close a device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to be closed

Parameter Values

handle: obtained from the dagOpen function

Returns

DerrNoError No error

Function Usage

Once the specified device has been closed, no subsequent communication with the device can be performed. In order to re-establish communications with a closed device, the device must be re-opened with the daqOpen function.

Prototypes

C/C++

daqClose(DaqHandleT handle);

Visual BASIC

VBdaqClose&(ByVal handle&)

Program References

DAQADCEX01.CPP, DAQDIGIOEX01.CPP, DAQDIGIOEX02.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DAQDACEX01.CPP, DAQ9513_01.C, DBK02EX.CPP, DBK04EX.CPP, DBK05EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK81EX.CPP, DBK82_83EX.CPP, DBK90EX.CPP, DBK20_21EX.CPP, DBK23_24EX.CPP, DBK25EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK53_54EX.CPP, DAQDACEX02.CPP, DAQTMREX01.CPP, DAQDACEX03.CPP, DAQEX.FRM (VB)

daqCreateDevice

Format

daqCreateDevice(pDevInfo)

Purpose

daqCreateDevice creates a device in the Windows Registry using the specified device information which is equivalent to creating the device using the DaqX control panel applet.

Parameter Summary

Parameter	Туре	Description
pDevInfo	DaqDevInfoPT	Pointer to the device information structure that defines the device to be created

Parameter Values

pDevInfo: see the DaqDevInfoT table below

Parameter Type Definitions

pDevInfo – (DaqDevInfoT)			
Definition	Description	Format	
AliasName	Device alias name	STRING	
DeviceType	Main chassis device type (see the DhiHardwareVersion table of the daqGetInfo function)	DaqHardwareVersion	
DeviceSubType	Main chassis device sub type (see the DaqHardwareSubType table of the daqGetInfo function)	DaqHardwareSubType	
Reserved1	Reserved for future use	DWORD	
Reserved2	Reserved for future use	DWORD	
InfoType	Indicates which one of the following structures contain valid interface specific device information (see the DaqInfoType table below)	DaqInfoType	
Тср	TCP interface information (see the DaqInfoTcpT below)	DaqInfoTcpT	
TcpChild	TCP child device interface information (see the DaqInfoTcpChildT below)	DaqInfoTcpChildT	
Parallel	Parallel port interface information (see the DaqInfoParallelT below)	DaqInfoParallelT	
Pci	PCI and Compact PCI bus interface information (see the DaqInfoPciT below)	DaqInfoPciT	
PcCard	PC Card interface information (see the DaqInfoPcCardT below)	DaqInfoPcCardT	
Generic	ISA bus interface information (see the DaqInfoGenericT below)	DaqInfoGenericT	

InfoType – (DaqInfoType)		
Definition	Description	
DaqInfoTypeUnknown	Indicates that the DaqDevInfoT device information structure has no interface specific	
	device information	
DaqInfoTypeGeneric	Indicates that the Generic structure element of the DaqDevInfoT structure contains valid	
	interface information	
DaqInfoTypeTcp	Indicates that the Tcp structure element of the DaqDevInfoT structure contains valid	
	interface information	
DaqInfoTypeTcpChild	Indicates that the TcpChild structure element of the DaqDevInfoT structure contains	
	valid interface information	
DaqInfoTypeParallel	Indicates that the Parallel structure element of the DaqDevInfoT structure contains valid	
	interface information	
DaqInfoTypePci	Indicates that the Pci structure element of the DaqDevInfoT structure contains valid	
	interface information	
DaqInfoTypePcCard	Indicates that the PcCard structure element of the DaqDevInfoT structure contains valid	
	interface information	

Tcp – (DaqInfoTcpT)		
Definition	Description	Format
IPMode	IP Address connection mode (see DaqIPModeT table below)	DaqIPModeT
SerialNum	Device serial number (not required if IPMode is	STRING
	DaqIPModeManualIP)	
IPAddress	Device IP address (not required if IPMode is DaqIPModeAutoDetect)	STRING

IPMode – (DaqIPModeT)		
Definition	Description	
DaqIPModeAutoDetect	Indicates that the connection to a TCP device or TCP child device will be made based on the serial number of the device	
DaqIPModeManualIP	Indicates that the connection to a TCP device or TCP child device will be made using a manually defined IP address	

TcpChild – (DaqInfoTcpChildT)			
Definition	Description	Format	
ParentAliasName	Alias name of the TCP parent device to which this device is connected	STRING	
ExpPort	Expansion port number of the TCP parent device to which this device is	DWORD	
	connected		
Тср	TCP interface information of the TCP parent device to which this	DaqInfoTcpT	
	device is connected (not required by daqCreateDevice, see the		
	DaqInfoTcpT table above)		

Parallel – (DaqInfoParallelT)			
Definition	Description	Format	
LPTPort	Parallel port number to which this device is connected	DWORD	
Protocol	Parallel port protocol (see the following DaqProtocol table)	DaqProtocol	

DaqProtocol		
Value Returned	Protocol	
DaqProtocolNone	Communications not established	
DaqProtocol4	Standard LPT Port 4-bit mode	
DaqProtocol8	Standard LPT Port 8-bit mode	
DaqProtocolSMC666	SMC 37C666 EPP mode	
DaqProtocolFastEPP	WBK20/21 Fast EPP mode	
DaqProtocolECP	Enhanced Capability Port	
DaqProtocol8BitEPP	8-bit EPP mode	
DaqProtocolISA	ISA bus card DaqBoards	
DaqProtocolPcCard	PCCard for Daq (PCMCIA)	
DaqProtocolUSB	USB protocol	
DaqProtocolPCI	PCI bus Data Acquisition Boards	
DaqProtocolCPCI	Compact PCI (cPCI) Data Acquisition Boards	
DaqProtocolTCPIP	Ethernet	

Pci – (DaqInfoPciT)			
Definition	Description	Format	
SerialNum	Device serial number	DWORD	
Bus	PCI bus number in which the device is installed	DWORD	
Slot	PCI slot number in which the device is installed	DWORD	

PcCard – (DaqInfoPcCardT)			
Definition	Description Forma		
Socket	PC Card socket number	DWORD	
BasePortAddr	Base port address	DWORD	
InterruptLevel	Interrupt level	DWORD	
DriverInstance	Driver instance	DWORD	
DaqModel	Daq model number DWORD		

Generic – (DaqInfoGenericT)			
Definition	Description Format		
BasePortAddr	Base port address	DWORD	
Protocol	Device protocol (see the DaqProtocol section of these tables) DaqProtocol		
InterruptLevel	Interrupt level	DWORD	
DMAChannel	DMA channel DWORD		

Returns

DerrNoError if successful or a DaqError error code (see the DaqError table at the end of chapter 4)

Function Usage

This function can be used to programmatically create devices that can be opened using daqOpen. This function can be used instead of or in conjunction with the DaqX control panel applet. It can also be used with daqDeleteDevice to create devices on the fly or with daqGetDeviceInventory to dynamically create newly detected devices.

When creating a device, be sure that the alias name is unique and the device type is correct. The InfoType parameter should be set to indicate which interface information structure is used.

Prototypes

C/C++

daqCreateDevice(DaqDevInfoPT pDevInfo);

Visual BASIC

VBdaqCreateDevice&(DevInfo As DaqDevInfoT)

Program References

daqCvtChannelType

Format

daqCvtChannelType (ChType, ChSubType, pChTypeStr, ChTypeStrSize)

Purpose

daqCvtChannelType converts a channel type and sub type to a string.

Parameter Summary

Parameter	Туре	Description
ChType	DaqAdcExpChType	Channel type
ChSubType	DaqAdcExpChSubType	Channel sub type
pChTypeStr	LPSTR	C/C++ only: String format of the channel type
ChTypeStrSize	DWORD	C/C++ only: Size of the channel type string

Parameter Values

ChType: see DaqAdcExpChType of the daqGetInfo function ChSubType: see DaqAdcExpChSubType of the daqGetInfo function pChTypeStr: pointer to a string large enough to hold the channel type string ChTypeStrSize: Size of the channel type string in bytes

Returns

Nothing in C/C++, The channel type string in Visual BASIC

Function Usage

This function converts a channel type and sub type to a string.

Prototypes

C/C++

daqCvtChannelType(DaqAdcExpChType ChType, DaqAdcExpChSubType ChSubType, PCHAR pChTypeStr, DWORD ChTypeStrSize);

Visual BASIC

VBdaqCvtChannelType\$(ByVal ChType&, ByVal ChSubType&)

Program References

daqCvtHardwareType

Format

daqCvtHardwareType (HwType, HwSubType, pHwTypeStr, HwTypeStrSize)

Purpose

daqCvtHardwareType converts a hardware type and sub type to a string.

Parameter Summary

Parameter	Туре	Description
HwType	DaqHardwareVersion	Hardware type
HwSubType	DaqHardwareSubType	Hardware sub type
pHwTypeStr	LPSTR	C/C++ only: String format of the hardware type
HwTypeStrSize	DWORD	C/C++ only: Size of the hardware type string

Parameter Values

HwType: see DaqHardwareVersion of the daqGetHardwareInfo function HwSubType: see DaqHardwareSubType of the daqGetHardwareInfo function pHwTypeStr: pointer to a string large enough to hold the hardware type string HwTypeStrSize: Size of the hardware type string in bytes

Returns

Nothing in C/C++, The hardware type string in Visual BASIC

Function Usage

This function converts a hardware type and sub type to a string.

Prototypes

C/C++

daqCvtHardwareType(DaqHardwareVersion HwType, DaqHardwareSubType HwSubType, PCHAR pHwTypeStr, DWORD HwTypeStrSize);

Visual BASIC

VBdaqCvtHardwareType\$(ByVal HwType&, ByVal HwSubType&)

Program References

Also See: daqCvtLinearSetup, daqCvtLinearSetupConvert, daqCvtSetAdcRange

Format

```
daqCvtLinearConvert(counts, scans, fValues, nValues)
```

Purpose

daqCvtLinearConvert converts the ADC readings into floating point numbers using the linear relationship that was specified with daqCvtLinearSetup.

Parameter Summary

Parameter	Туре	Description
counts	PWORD	Acquired ADC readings to be converted
scans	DWORD	Number of scans to be converted
fValues	PFLOAT	Array to hold the converted readings
nValues	DWORD	Size of the reading array

Parameter Values

counts: valid pointer to an array of integer words (2 bytes) which contain the data to perform the linear conversion

- scans: the number of scans to be converted, from 1 to the size of the counts array (in scans)
- fValues: valid pointer to an array of single precision floating point (4 bytes) values which will store the converted readings upon return of this command
- nValues: the size of the fValues arrary should be at least equal to:
 - [scans * (channels in scan) * (the sample size, normally 2 bytes)]

Returns

DerrNoError No error

Function Usage

For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).

See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

The daqCvtLinearConvert function may be invoked repeatedly to perform multiple conversions, each using the same linear relationship. For convenience, daqCvtLinearSetupConvert can perform both setup and conversion.

Prototypes

C/C++

daqCvtLinearConvert(PWORD counts, DWORD scans, PFLOAT fValues, DWORD
nValues);

Visual BASIC

VBdaqCvtLinearConvert&(counts%, ByVal scans&, fValues!, ByVal nValues&)

Program References

Also See: daqCvtLinearConvert, daqCvtLinearSetupConvert, daqCvtSetAdcRange

Format

```
daqCvtLinearSetup(nscan, readingsPos, nReadings, signal1, voltage1,
signal2, voltage2, avg)
```

Purpose

dagCvtLinearSetup saves the data required for dagCvtLinearConvert to perform conversions.

Parameter Summary

Parameter	Туре	Description
nscan	DWORD	Number of readings in a single scan
readingsPos	DWORD	Position within the scan of the first reading to convert
nReadings	DWORD	Number of consecutive ADC readings to convert
signal1	FLOAT	Transducer input signal that produces voltage1
voltage1	FLOAT	Transducer output voltage for input signal1
signal2	FLOAT	Transducer input signal that produces voltage2
voltage2	FLOAT	Transducer output voltage for input signal2
avg	DWORD	Type of averaging to use

Parameter Values

nscan: valid values range from 1 to 512

readingsPos: valid values range from 0 to (nscan - 1)

nReadings: valid values range from 1 to (nscan - readingsPos)

signal1: single precision floating point (4 bytes) value representing transducer input voltage
voltage1: single precision floating point (4 bytes) value representing transducer output voltage
signal2: single precision floating point (4 bytes) value representing transducer input voltage
voltage2: single precision floating point (4 bytes) value representing transducer output voltage
avg: see table below

Parameter Type Definitions

avg	
Definition	Description
avg = 0	Specifies block averagingall scans are averaged together to compute a single value for each channel
avg = 1	Specifies no averagingeach scan's readings are converted into measured signals
avg ≥ 2	Specifies moving averageeach scan's readings are averaged with the avg-1 preceding scans' readings before conversion.

Returns

DerrNoError No error

Function Usage

For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).

See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

For convenience, daqCvtLinearSetupConvert can perform both setup and conversion.

Moving Averages

To better illustrate the moving average feature of the avg parameter, suppose the avg value is set to 3. Since each scan's readings are averaged with the preceding scan, the results from the first scan (which has no preceding scan) are not averaged at all. However, the results from the second scan are averaged with the first scan, and the results from the third scan are averaged with the preceding two scans. After the third scan, each subsequent scan is averaged with the preceding two scans (since the avg value is 3, and avg-1 is two). In another instance, if the avg value is set to 5, then each scan after the fifth scan would be averaged with the four preceding it.

Prototypes

C/C++

daqCvtLinearSetup(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT signal1, FLOAT voltage1, FLOAT signal2, FLOAT voltage2, DWORD avg);

Visual BASIC

VBdaqCvtLinearSetup (ByVal nscan&, ByVal readingsPos&, ByVal nReadings&, ByVal signal1!, ByVal voltage1!, ByVal signal2!, ByVal voltage2!, ByVal avg&)

Program References

Also See: daqCvtLinearConvert, daqCvtLinearSetup, daqCvtSetAdcRange

Format

```
daqCvtLinearSetupConvert(nscan, readingsPos, nReadings, signal1, voltage1,
signal2, voltage2, avg, counts, scans, fValues, nValues)
```

Purpose

daqCvtLinearSetupConvert both sets up the linear conversion process and converts the ADC readings into floating point numbers.

Parameter Summary

Parameter	Туре	Description
nscan	DWORD	Number of channels in a single scan
readingsPos	DWORD	Position within the scan of the first reading to convert
nReadings	DWORD	Number of consecutive ADC readings to convert
signall	FLOAT	Transducer input signal that produces voltage1
voltagel	FLOAT	Transducer output voltage for input signal1
signal2	FLOAT	Transducer input signal that produces voltage2
voltage2	FLOAT	Transducer output voltage for input signal2
avg	DWORD	Type of averaging to use
counts	PWORD	Array of acquired ADC readings to be converted
scans	DWORD	Number of scans to be converted
fValues	PFLOAT	Array to hold the converted readings
nValues	DWORD	Size of the reading array

Parameter Values

nscan: valid values range from 1 to 512

readingsPos: valid values range from 0 to (nscan - 1)

nReadings: valid values range from 1 to (nscan - readingsPos)

signal1: single precision floating point (4 bytes) value representing transducer input voltage

voltage1: single precision floating point (4 bytes) value representing transducer output voltage

signal2: single precision floating point (4 bytes) value representing transducer input voltage

voltage2: single precision floating point (4 bytes) value representing transducer output voltage avg: see table below

counts: valid pointer to an array of integer words (2 bytes) which contain the data to perform the linear conversion

scans: the number of scans to be converted from 1 to the size of the counts array (in scans)

fValues: valid pointer to an array of single precision floating point (4 bytes) values which will store the converted readings upon return from this command

nValues: the size of the fValues arrary should be at least equal to: (scans * channels in scan * the sample size, normally 2)

Parameter Type Definitions

avg	
Definition	Description
avg = 0	Specifies block averagingall scans are averaged together to compute a single value for each channel
avg = 1	Specifies no averagingeach scan's readings are converted into measured signals
avg ≥ 2	Specifies moving averageeach scan's readings are averaged with the avg-1 preceding scans' readings before conversion.

Returns

DerrNoError

No error

Function Usage

For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).

See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

The daqCvtLinearSetupConvert combines the functions of the both the daqCvtLinearConvert function and the daqCvtLinearSetup function.

Moving Averages

To better illustrate the moving average feature of the avg parameter, suppose the avg value is set to 3. Since each scan's readings are averaged with the preceding scan, the results from the first scan (which has no preceding scan) are not averaged at all. However, the results from the second scan are averaged with the first scan, and the results from the third scan are averaged with the preceding two scans. After the third scan, each subsequent scan is averaged with the preceding two scans (since the avg value is 3, and avg-1 is two). In another instance, if the avg value is set to 5, then each scan after the fifth scan would be averaged with the four preceding it.

Prototypes

C/C++

daqCvtLinearSetupConvert(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT signal1, FLOAT voltage1, FLOAT signal2, FLOAT voltage2, DWORD avg, PWORD counts, DWORD scans, PFLOAT fValues, DWORD nValues);

Visual BASIC

VBdaqCvtLinearSetupConvert&(ByVal nscan&, ByVal readingsPos&, ByVal nReadings&, ByVal signal1!, ByVal voltage1!, ByVal signal2!, ByVal voltage2!, ByVal avg&, counts%, ByVal scans&, fValues!, ByVal nValues&)

Program References

daqCvtRawDataFormat

Also See: daqAdcSetDataFormat, daqAdcTransferSetBuffer

Format

daqCvtRawDataFormat(buf, action, lastRetCount, scanCount, chanCount)

Purpose

daqCvtRawDataFormat converts raw data to a specified format.

Parameter Summary

Parameter	Туре	Description
buf	PWORD	Pointer to the buffer containing the raw data
action	DaqAdcCvtAction	Type of conversion action to perform on the raw data
lastRetCount	DWORD	Last value in the retCount parameter returned from the
		daqAdcTransferGetStat function
scanCount	DWORD	Length of the raw data buffer in scans
chanCount	DWORD	Number of channels per scan in the raw data buffer

Parameter Values

buf: a pointer to an array of values from 0 to 65,535.

action: see table below

lastRetCount: valid values range from 1 to 4,294,967,295; however, memory limitations may apply scanCount: valid values range from 1 to 4,294,967,295; however, memory limitations may apply chanCount: valid values range from 1 to 72

Parameter Type Definitions

action-(DaqAdcCvtAction)		
Definition	Description	
DacaUnpack	Decompresses raw data	
DacaRotate	Reformats a circular buffer into a linear buffer	

Returns

DerrNoError No error

Function Usage

For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).

See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

The buf parameter specifies the pointer to the data buffer containing the raw data. Prior to calling this function, this user-allocated buffer should already contain the entire raw data transfer. Upon completion, this data buffer will contain the converted data (the buffer must be able to contain all the converted data).

The scanCount parameter specifies the length of the raw buffer in scans. Since the converted data will overwrite the raw data in the buffer, make sure the specified buffer is large enough to contain all of the converted data.

This function should be called after the raw data has been acquired. See the transfer data functions (of the form dagAdcTransfer...) for more details on the collection of raw data.

Prototypes

C/C++

```
daqCvtRawDataFormat(PWORD buf, DaqAdcCvtAction action, DWORD lastRetCount,
DWORD scanCount, DWORD chanCount);
```

Visual BASIC

```
VBdaqCvtRawDataFormat&(buf%, ByVal action&, ByVal lastRetCount&, ByVal
scanCount&, ByVal chanCount&)
```

Program References

daqCvtRtdConvert

Also See: daqCvtRtdSetup, daqCvtRtdSetupConvert

Format

daqCvtRtdConvert(counts, scans, temp, ntemp)

Purpose

daqCvtRtdConvert takes raw acquisiton data and converts it to a Celsius scale.

Parameter Summary

Parameter	Туре	Description
counts	PWORD	Array of one or more scans of raw data as received from the device
scans	DWORD	Number of scans of raw data in counts parameter (number of pre-
		trigger + post-trigger scans)
temp	PSHORT	Variable array to hold converted temperatures
ntemp	DWORD	Size of temperature array

Parameter Values

- counts: valid pointer to an array of integer words (2 bytes) which contain the raw data to perform the RTD conversion
- scans: the number of scans to be converted from 1 to the size of the counts array (in scans)
- temp: valid pointer to an array of single precision floating point (4 bytes) values which will store the converted readings upon return from this command
- ntemp: The value of the ntemp parameter should be equal to number of RTDs specified in setup times the number of scans. If averaging is used, then ntemp should be equal to: [(the number of RTDs) * scans * (the value of the avg parameter as set in the daqCvtRtdSetup function)]

Returns

DerrRtdNoSetup DerrRtdTArraySize DerrNoError Setup was not called Temperature array is not large enough No error

For more details on error messages refer to the Daq Error Table.

Function Usage

For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).

See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

The daqCvtRtdConvert function takes acquired data from a resistance temperature detector (RTD) and converts them to temperature readings in Celsius, with a resolution in tenths of a degree (0.1°C). Before this commannd is executed, the RTD conversion should be configured using the daqCvtRtdSetup function. The total number of data conversions [scans * (RTD channels per scan) * 4] must be less than 32,767.

For convenience, both setup and conversion can be performed at once by daqCvtRtdSetupConvert.

Using Resistance Temperature Detectors (RTDs)

Many devices can measure temperatures through use of DBK9 RTD expansion cards. Up to 8 RTDs can attach to each DBK9 and up to 32 DBK9s can be attached to a single device; allowing for up to 256 temperature readings. The software currently supports 100, 500, and 1000 ohm RTDs. The RTDs must all be of the same type, and the reading groups for all RTDs must follow each other in the scan sequence. All non-RTD data conversion, if any, must be done by other means.

The RTD measurement functions are designed for simple temperature measurement in which each RTD channel is read 4 times. These 4 readings must be grouped together consecutively during a scan in the following order, with the appropriate gain: Dbk9VoltageA (gain=0), Dbk9VoltageB (gain=1), Dbk9VoltageC (gain=3), and Dbk9VoltageD (gain=3).

The temperature conversion functions use input data from one or more device scans. They take 4 voltage readings for each RTD channel, apply the appropriate averaging method, convert the voltages to a resistance, and then (using the appropriate curves for the RTD type) convert the resistance into a temperature. To illustrate, suppose the data in the following table was gathered:

	Readings Channel 0				Readings Channel 1			
Scan	0	1	2	3	4	5	6	7
1	Ch 0 Va	Ch 0 Vb	Ch 0 Vc	Ch 0 Vd	Ch 1 Va	Ch 1 Vb	Ch 1 Vc	Ch 1 Vd
2	Ch 0 Va	Ch 0 Vb	Ch 0 Vc	Ch 0 Vd	Ch 1 Va	Ch 1 Vb	Ch 1 Vc	Ch 1 Vd
3	Ch 0 Va	Ch 0 Vb	Ch 0 Vc	Ch 0 Vd	Ch 1 Va	Ch 1 Vb	Ch 1 Vc	Ch 1 Vd
4	Ch 0 Va	Ch 0 Vb	Ch 0 Vc	Ch 0 Vd	Ch 1 Va	Ch 1 Vb	Ch 1 Vc	Ch 1 Vd
5	Ch 0 Va	Ch 0 Vb	Ch 0 Vc	Ch 0 Vd	Ch 1 Va	Ch 1 Vb	Ch 1 Vc	Ch 1 Vd

The 4 readings for each channel are grouped together in order. If this scan data is passed to daqCvtRtdConvert(through the counts parameter) with averaging disabled (avg parameter in daqCvtRtdSetup set to 1), the function will return the temp parameters shown in the table. Temperatures returned will be in tenths of a degree Celsius.

Temperatures				
Scan	0	1		
1	Ch 0 °C	Ch 1 °C		
2	Ch 0 °C	Ch 1 °C		
3	Ch 0 °C	Ch 1 °C		
4	Ch 0 °C	Ch 1 °C		
5	Ch 0 °C	Ch 1 °C		

If the scan data is passed to daqCvtRtdConvert (through the counts parameter) with averaging set to block averaging (avg parameter in daqCvtRtdSetup set to 0), the function will return the temp parameter values shown in the table.

Temperatures			
	0	1	
Average of all Temps	Ch 0 ℃	Ch 1 ℃	

Prototypes

C/C++

daqCvtRtdConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

Visual BASIC

VBdaqCvtRtdConvert&(counts%, ByVal scans&, temp%, ByVal ntemp&)

Program References

daqCvtRtdSetup

Also See: daqCvtRtdSetup, daqCvtRtdSetupConvert

Format

```
daqCvtRtdSetup(nscan, startPosition, nRtd, rtdType, avg)
```

Purpose

daqCvtRtdSetup sets up parameters for subsequent resistance temperature detector (RTD) data conversions.

Parameter Summary

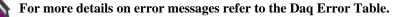
Parameter	Туре	Description
nscan	DWORD	Total number of channel readings in a single scan
startPosition	DWORD	Position of the first RTD reading group in the scan
nRtd	DWORD	Number of the RTDs' signals that are to be converted to temperature
		values
rtdType	RtdType	Type of RTDs being used to collect data
avg	DWORD	Type of averaging to use

Parameter Values

nscan: valid values range from 1 to 512; this number should be equivalent to (the number of RTDs * 4) + any additional channels

nRtd: valid values range from 1 to 128 rtdType: see table below

avg: see table below


Parameter Type Definitions

rtdType-(RtdType)			
Definition	Description		
Dbk9RtdType100	Value for a 100 ohm RTD		
Dbk9RtdType500	Value for a 500 ohm RTD		
Dbk9RtdType1K	Value for a 1000 ohm RTD		

avg	
Definition	Description
avg = 0	Specifies block averagingall scans are averaged together to compute a single value for each channel
avg = 1	Specifies no averagingeach scan's readings are converted into measured signals
avg ≥ 2	Specifies moving averageeach scan's readings are averaged with the avg-1 preceding scans' readings before conversion.

Returns

DerrRtdParam	Setup parameter out-of-range
DerrRtdValue	Invalid RTD type
DerrNoError	No error

Function Usage

For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).

See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

For more detailed information on using RTDs refer to the entry for the daqCvtRtdConvert function. For convenience, both setup and conversion can be performed at once by daqCvtRtdSetupConvert.

Moving Averages

To better illustrate the moving average feature of the avg parameter, suppose the avg value is set to 3. Since each scan's readings are averaged with the preceding scan, the results from the first scan (which has no preceding scan) are not averaged at all. However, the results from the second scan are averaged with the first scan, and the results from the third scan are averaged with the preceding two scans. After the third scan, each subsequent scan is averaged with the preceding two scans (since the avg value is 3, and avg-1 is two). In another instance, if the avg value is set to 5, then each scan after the fifth scan would be averaged with the four preceding it.

Prototypes

C/C++

daqCvtRtdSetup(DWORD nscan, DWORD startPosition, DWORD nRtd, RtdType
rtdType, DWORD avg);

Visual BASIC

VBdaqCvtRtdSetup&(ByVal nscan&, ByVal startPosition&, ByVal nRtd&, ByVal rtdType&, ByVal avg&)

Program References

daqCvtRtdSetupConvert

Also See: daqCvtRtdSetup, daqCvtRtdConvert

Format

daqCvtRtdSetupConvert(nscan, startPosition, nRtd, rtdType, avg, counts, scans, temp, ntemp)

Purpose

daqCvtRtdSetupConvert both sets up the resistance temperature detector (RTD) data conversion process and converts that RTD data to a Celsius scale.

Parameter Summary

Parameter	Туре	Description
nscan	DWORD	Total number of channel readings in a scan
startPosition	DWORD	Position of the first RTD reading group in the scan
nRtd	DWORD	Number of RTDs beings scanned
rtdType	RtdType	Type of RTDs being used
avg	DWORD	Type of averaging to be used
counts	PWORD	Pointer to raw A/D data from one or more scans
scans	DWORD	Number of scans of raw data in counts (number of pre-trigger +
		post-trigger scans)
temp	PSHORT	Variable array to hold converted temperatures
ntemp	DWORD	Size of temperature array

Parameter Values

nscan: valid values range from 1 to 512; this number should be equivalent to:

[(the number of RTDs * 4) + (any additional channels)]

nRtd: valid values range from 1 to 128

rtdType: see table below

avg: see table below

- counts: valid pointer to an array of integer words (2 bytes) which contain the raw data to perform the RTD conversion
- scans: the number of scans to be converted from 1 to the size of the counts array (in scans)

temp: valid pointer to an array of single precision floating point (4 bytes) values which will store the converted readings upon return from this command

ntemp: the value of the ntemp parameter should be equal to number of RTDs specified in setup times the number of scans. If averaging is used, then ntemp should be equal to:

[(number of RTDs) * (scans) * (the value of the avg parameter as set in the daqCvtRtdSetup function)].

Parameter Type Definitions

RtdType-(RtdType)			
Definition	Description		
Dbk9RtdType100	Value for a 100 ohm RTD		
Dbk9RtdType500	Value for a 500 ohm RTD		
Dbk9RtdType1K	Value for a 1000 ohm RTD		

Avg	
Definition	Description
avg = 0	Specifies block averagingall scans are averaged together to compute a single value for each channel
avg = 1	Specifies no averagingeach scan's readings are converted into measured signals
avg ≥ 2	Specifies moving averageeach scan's readings are averaged with the avg-1 preceding scans'
	readings before conversion.

Returns

DerrRtdParam	Setup parameter out-of-range
DerrRtdTArraySize	Temperature storage array not large enough
DerrRtdValue	Invalid RTD type
DerrNoError	No error

For more details on error messages refer to the Daq Error Table.

Function Usage

For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).

See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

The daqCvtRtdSetupConvert combines the operations of the both the daqCvtRtdConvert function and the daqCvtRtdSetup function. For more detailed information on using RTDs refer to the entry for the daqCvtRtdConvert function.

Moving Averages

To better illustrate the moving average feature of the avg parameter, suppose the avg value is set to 3. Since each scan's readings are averaged with the preceding scan, the results from the first scan (which has no preceding scan) are not averaged at all. However, the results from the second scan are averaged with the first scan, and the results from the third scan are averaged with the preceding two scans. After the third scan, each subsequent scan is averaged with the preceding two scans (since the avg value is 3, and avg-1 is two). In another instance, if the avg value is set to 5, then each scan after the fifth scan would be averaged with the four preceding it.

Prototypes

C/C++

daqCvtRtdSetupConvert(DWORD nscan, DWORD startPosition, DWORD nRtd, RtdType rtdType, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

Visual BASIC

VBdaqCvtRtdSetupConvert&(ByVal nscan&, ByVal startPosition&, ByVal nRtd&, ByVal rtdType&, ByVal avg&, counts%, ByVal scans&, temp%, ByVal ntemp&)

Program References

daqCvtSetAdcRange

Also See:daqCvtLinearSetup, daqCvtLinearConvert daqCvtLinearSetupConvert

Format

daqCvtSetAdcRange (Admin, Admax)

Purpose

daqCvtSetAdcRange sets the ADC range for use by the conversion functions (i.e., all functions of the form daqCvt...).

Parameter Summary

Parameter	Туре	Description
Admin	FLOAT	A/D minimum voltage range (in volts)
Admax	FLOAT	A/D maximum voltage range (in volts)

Parameter Values:

Admin: valid values depend on the device and signal being processed Admax: valid values depend on the device and signal being processed

Returns

DerrNoError No error

Function Usage

For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).

See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

The daqCvtSetAdcRange function is used by the conversion functions to establish the range of an acquisition. The voltage range is dependent on the acquisition's gain values as set in the daqAdcSetScan function—see daqAdcSetScan for more information.

Prototypes

C/C++

daqCvtSetAdcRange(FLOAT Admin, FLOAT Admax);

Visual BASIC

VBdaqCvtSetAdcRange&(ByVal ADmin!, ByVal ADmax!)

Program References

daqCvtTCConvert and daqCvTCConvertF

Also See: daqCvtTCSetup, daqCvtTCSetupConvert, daqCvtTCSetupConvertF

Format

daqCvtTCConvert(counts, scans, temp, ntemp)

Purpose

daqCvtTCConvert and daqCvtTCConvertF each convert raw data acquired from a thermocouple (T/C) to a Celsius scale. See Note 1.

Parameter Summary

Parameter	Туре	Description	
counts	PWORD	Array of one or more scans of raw data	
scans	DWORD	Number of scans of data in counts array (number of pre-trigger + post-trigger scans)	
temp	PSHORT	Variable array to hold converted temperature results (Note 1)	
ntemp	DWORD	Number of entries in the temperature array	

Parameter Values

counts: valid values range from 0 to 65,536 (each raw data item may be any 16-bit value) scans: valid value range from 1 to 4,294,967,295; however, memory limitations may apply

- temp: valid converted values stored in this array range from -2,000 (-200°C) to +13,720 (+1,372°C), depending on the thermocouple type
- ntemp: value of the ntemp parameter should be equal to number of T/Cs specified in setup times the number of scans. If averaging is used, then ntemp should be equal to: [(number of T/Cs) * (scans) * (the value of the avg parameter as set in the dagCvtTCSetup function)]

Returns

DerrTCE_NOSETUP	Setup was not called
DerrTCE_PARAM	Parameter out-of-range
DerrNoError	No error

For more details on error messages refer to the Daq Error Table.

Function Usage

For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).

See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

Note 1: daqCvtTCConvert converts temperature readings to values in tenths of degrees Celsius (0.1°C). daqCvtTCConvertF stores actual temperature values, i.e., actual instead of a value converted to the nearest tenth of a degree °C.

The daqCvtTCConvert takes raw A/D readings from a thermocouple (T/C) and converts them to temperature readings in tenths of degrees Celsius (0.1°C), **see Note 1**. The temp array actually stores the converted values as 10 times the Celsius temperature--for example, 50°C would be represented as 500 and - 10°C would be -100. The value in the ntemp parameter is checked by the functions to avoid writing past the end of the array.

Note 1: Unlike daqCvtTCConvert, daqCvtTCConvertF stores actual temperature values instead of values converted to temperature readings in tenths of degrees Celsius.

Before this commannd is executed, the conversion should be configured using the daqCvtTCSetup function. For convenience, both setup and conversion can be performed at once by daqCvtTCSetupConvert. All non-thermocouple data conversion, if any, must be done by other means.

Ine total number of data conversions (scan * channels per scan) must be less than 32,768.

Using Thermocouples (T/Cs)

Some products can measure thermocouple temperatures using a internal thermocouple channels or expansion thermocouple modules or cards. These products normally include a cold-junction compensation circuit (CJC) channel. This channel must be used in order to compensate for the temperature at the juncture of the thermocouple to the device. Also, some temperature measurement devices incorporate a zero offset channel which also can be used to null any offset errors inherent in the system. The CJC channel and zero-offset channel location depend upon the module or card type. Please refer to your hardware documentation for your temperature measurement to determine the location of the CJC and zero channels (if applicable). You can also refer to the examples listed below for programming your specific device. The following example uses Channel 0 as the CJC channel and Channel 1 is shorted for performing auto-zero compensation (as described in the "Correcting Data" section below). This particular example assumes 14 TC channels so Channels 2 through 15 accept thermocouples for temperature measurement. Up The software supports type J, K, T, E, N28, N14, S, R and B thermocouples.

The three temperature measurement conversion functions (daqCvtTCConvert, daqCvtTCSetup, and daqCvtTCSetupConvert) are designed for temperature measurement where the cold-junction compensation circuit (CJC) channel (channel 0) reading from the T/C card is immediately followed in the scan sequence by the T/C channel readings. All readings must be from the same type of T/C. The CJC and T/C readings are taken with the optimal gains (as described in the "T/C Gains Settings" section below).

How The T/C Acquisition And Conversion Works

The temperature conversion functions take input data from one or more scans from the device. They then examine the CJC and thermocouple readings within that scan and (after optional averaging), convert them to temperatures which are stored as output. The procedure for the scan varies, depending on whether auto-zeroing has been enabled or disabled setting. If auto-zeroing has been enabled, the scan readings would resemble the following table:

Scan	Reading					
	0	1	2	3	4	5
1	CJC Zero	J Zero	CJC	J1a	J1b	J1c
2	CJC Zero	J Zero	CJC	J2a	J2b	J2c
3	CJC Zero	J Zero	CJC	J3a	J3b	J3c
4	CJC Zero	J Zero	CJC	J4a	J4b	J4c

The first 2 readings of each scan are non-temperature voltage readings to compensate for the CJC circuit and the shorted channel 0. The third reading is from the CJC, and the remaining 3 readings are from 3 type J thermocouples. The first 2 readings will be used to remove offset errors in the CJC and T/C reading. However, if the auto-zero feature is disabled, the first 2 readings will be ignored, as shown in the following table:

Scan	Reading					
	Shorted C	hannels	0	1	2	3
1	V (ignored)	V (ignored)	CJC	J1a	J1b	J1c
2	V (ignored)	V (ignored)	CJC	J2a	J2b	J2c
3	V (ignored)	V (ignored)	CJC	J3a	J3b	J3c
4	V (ignored)	V (ignored)	CJC	J4a	J4b	J4c

In either case, the CJC and T/C readings are used to produce one temperature result for each T/C reading. Thus, the 24 original readings are reduced to 12 temperatures.

To measure temperatures, the scan must be set up so the T/C measurements consecutively follow their corresponding CJC measurement (the CJC measurement need not be the first element in the scan). If auto-zeroing is enabled, the CJC measurement must be preceded by both a CJC zero measurement and a T/C zero measurement.

All of the thermocouples converted with a single invocation of the conversion functions must be of the same type: J, K, T, E, N28, N14, S, R, or B. To measure with more than one type of thermocouple, they must be sorted by type within the scan, and each type must be preceded by the related CJC.

The scan is not restricted to thermocouple measurements. The scan may include other types of signals such as voltage, current, or digital input; but conversion of these readings cannot be performed by the temperature conversion functions cannot handle them.

T/C Gains Settings

The temperature measurements must be made with the correct gain settings. The gain settings for the different thermocouple types depend on the bipolar/unipolar setting of the device, and the type of card being used. PC cards can only be set for bipolar acquisitions, and have their own set of gain codes. The gains settings should be established with the daqAdcSetScan function, as specified in the following tables.

Unipolar operations are not recommended for thermocouple measurement unless the measured temperatures will be greater than the device temperature.

	DBK19 and DBK52 Gain Codes					
T/C Type	Unipolar Gain Code	Bipolar Gain Code	Bipolar Gain Codes for Daq/2000 Series devices* and PC Cards			
CJC	Dbk19UniCJC	Dbk19BiCJC	Dbk19PCCBiCJC			
J	Dbk19UniTypeJ	Dbk19BiTypeJ	Dbk19PCCBiTypeJ			
К	Dbk19UniTypeK	Dbk19BiTypeK	Dbk19PCCBiTypeK			
Т	Dbk19UniTypeT	Dbk19BiTypeT	Dbk19PCCBiTypeT			
E	Dbk19UniTypeE	Dbk19BiTypeE	Dbk19PCCBiTypeE			
N28	Dbk19UniTypeN28	Dbk19BiTypeN28	Dbk19PCCBiTypeN28			
N14	Dbk19UniTypeN14	Dbk19BiTypeN14	Dbk19PCCBiTypeN14			
S	Dbk19UniTypeS	Dbk19BiTypeS	Dbk19PCCBiTypeS			
R	Dbk19UniTypeR	Dbk19BiTypeR	Dbk19PCCBiTypeR			
В	Dbk19UniTypeB	Dbk19BiTypeB	Dbk19PCCBiTypeB			

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

	DBK81,DBK82,DBK83,DBK84 and DaqBook/2020 Gain Codes					
T/C Type	Unipolar Gain Code	Bipolar Gain Code	Bipolar Gain Codes for Daq/2000 Series devices* and PC Cards			
CJC	Dbk81UniCJC	Dbk81BiCJC	Dbk81PCCBiCJC			
J	Dbk81UniTypeJ	Dbk81BiTypeJ	Dbk81PCCBiTypeJ			
К	Dbk81UniTypeK	Dbk81BiTypeK	Dbk81PCCBiTypeK			
Т	Dbk81UniTypeT	Dbk81BiTypeT	Dbk81PCCBiTypeT			
Е	Dbk81UniTypeE	Dbk81BiTypeE	Dbk81PCCBiTypeE			
N28	Dbk81UniTypeN28	Dbk81BiTypeN28	Dbk81PCCBiTypeN28			
N14	Dbk81UniTypeN14	Dbk81BiTypeN14	Dbk81PCCBiTypeN14			
S	Dbk81UniTypeS	Dbk81BiTypeS	Dbk81PCCBiTypeS			
R	Dbk81UniTypeR	Dbk81BiTypeR	Dbk81PCCBiTypeR			
В	Dbk81UniTypeB	Dbk8lBiTypeB	Dbk81PCCBiTypeB			

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

	DBK90 and DBK100 Gain Codes					
T/C Type	Unipolar Gain Code	Bipolar Gain Code	Bipolar Gain Codes for Daq/2000 Series devices* and PC Cards			
CJC	Dbk90UniCJC	Dbk90BiCJC	Dbk90PCCBiCJC			
J	Dbk90UniTypeJ	Dbk90BiTypeJ	Dbk90PCCBiTypeJ			
К	Dbk90UniTypeK	Dbk90BiTypeK	Dbk90PCCBiTypeK			
Т	Dbk90UniTypeT	Dbk90BiTypeT	Dbk90PCCBiTypeT			
E	Dbk90UniTypeE	Dbk90BiTypeE	Dbk90PCCBiTypeE			
N28	Dbk90UniTypeN28	Dbk90BiTypeN28	Dbk90PCCBiTypeN28			
N14	Dbk90UniTypeN14	Dbk90BiTypeN14	Dbk90PCCBiTypeN14			
S	Dbk90UniTypeS	Dbk90BiTypeS	Dbk90PCCBiTypeS			
R	Dbk90UniTypeR	Dbk90BiTypeR	Dbk90PCCBiTypeR			
В	Dbk90UniTypeB	Dbk90BiTypeB	Dbk90PCCBiTypeB			

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

Unipolar operations are not recommended for thermocouple measurement unless the measured temperatures will be greater than the device temperature.

	Thermocouple mV Outputs For Temperature Ranges Depending on Ambient Temperature						
T/C Type		nperature Range ambient	Measured Temperature Range @ 25°C ambient		Measured Temperature Range @ 50°C ambient		
	Temp (°C)	0°C Output (mV)	Temp (°C)	25°C Output (mV)	Temp (°C)	50°C Output (mV)	
J	-200 to 760	-7.9 to 42.9	-200 to 760	-9.2 to 41.6	-200 to 760	-11.8 to 39.0	
к	-200 to 1372	-5.9 to 54.9	-200 to 1372	-6.9 to 53.9	-200 to 1372	-8.9 to 52.9 (50.0)	
т	-200 to 400	-5.6 to 20.9	-200 to 400	-6.6 to 19.9	-200 to 400	-8.7 to 17.7	
E	-270 to 1000	-9.8 to 76.4	-270 to 1000	-11.3 to 74.9	-270 to 1000	-14.5 to 71.7	
N28	-270 to 400	-4.3 to 13.0	-270 to 400	-5.0 to 12.3	-270 to 400	-6.4 to 10.9	
N14	0 to 1300	0.0 to 47.5	0 to 1300	-0.7 to 46.8	0 to 1300	-2.0 to 45.5	
S	-50 to 1780	-0.2 to 18.8	-50 to 1780	-0.4 to 18.7	-50 to 1780	-0.7 to 18.4	
R	-50 to 1780	-0.2 to 21.3	-50 to 1780	-0.4 to 21.1	-50 to 1780	-0.7 to 20.8	
В	50 to 1780	0.0 to 13.4	50 to 1780	0.0 to 13.4	50 to 1780	0.0 to 13.4	

When using gain values from the preceding tables to measure TCs, the following temperature ranges apply:

Correcting Data

Two software techniques (software calibration and zero compensation) can be used to increase the accuracy of a temperature module or card.

- Software calibration uses gain and offset calibration constants, unique to each card, to compensate for inherent errors on the card.
- Zero compensation is a method by which any offset voltage on the card can be removed at run-time. This is done by measuring a shorted channel at the same gain on the actual input to find the offset, and subtracting this value from the actual reading.

The thermocouple linearization function has a special auto-zero compensation feature that will perform zero compensation on the raw thermocouple data before linearizing when using a temperature module or card. The auto-zero feature is enabled by default, but can be disabled using the daqAutoZeroCompensate function. It is not available when using unipolar mode.

If a temperature module or card is used with *auto-zeroing enabled*, the CJC channel reading described above must be preceded by 2 readings from the shorted channel (channel 1). The first shorted reading must be at the same gain setting as the CJC reading. The other shorted reading must be at the gain of the T/C to be converted. If, instead, *software calibration* is used with the temperature module or card, the calibration constants for the card to be used should be entered into the calibration file.

Prototypes

C/C++

daqCvtTCConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

Visual BASIC

VBdaqCvtTCConvert&(counts%, ByVal scans&, temp%, ByVal ntemp&)

Program References

DBK19EX.CPP, DBK81EX.CPP, DBK82_83EX.CPP, DBK90EX.CPP

daqCvtTCSetup

 ${\it Also See: } \texttt{daqCvtTCConvert, daqCvtTCConvertF, daqCvtTCSetupConvert, daqCvtTCSetupConvertF}$

Format

```
daqCvtTCSetup(nscan, cjcPosition, ntc, tcType, bipolar, avg)
```

Purpose

daqCvtTCSetup sets up the conversion of data acquired from a thermocouple (T/C).

Parameter Summary

Parameter	Туре	Description
nscan	DWORD	Number of channel readings in a single scan
cjcPosition	DWORD	Position of the cold-junction compensation circuit (CJC) reading within
		each scannot the CJC zero reading, if any
ntc	DWORD	Number of thermocouple signals that are to be converted to temperature
		values
tcType	ТСТуре	Type of thermocouples that generated the measurements
bipolar	BOOL	Must be set true if the readings were acquired with the device set for
		bipolar operation; must be set false (zero) for unipolar operation
avg	DWORD	Type of averaging to be performed

Parameter Values

nscan: valid values range from 2 to 512; this number should be equal to

(the number of T/Cs + the number of CJCs + any zero readings + any additional voltage readings) cjcPosition: valid values depend on whether or not zero compensation is

being used: values range from 0 to

 $(\texttt{nscan-2}) \ \text{with no zero compensation, and from 2 to (nscan-2) with zero compensation ntc: valid values range from 1 to [(nscan-1)-cjcPosition]$

tcType: see table below

bipolar: valid values are either true $(\neq 0)$ or false (=0)

avg: see table below

Parameter Type Definitions

tcType-(TCType)	
Definition	Description
Dbk19TCTypeJ	Specifies a Type J thermocouple
Dbk19TCTypeK	Specifies a Type K thermocouple
Dbk19TCTypeT	Specifies a Type T thermocouple
Dbk19TCTypeE	Specifies a Type E thermocouple
Dbk19TCTypeN28	Specifies a Type N28 thermocouple
Dbk19TCTypeN14	Specifies a Type N14 thermocouple
Dbk19TCTypeS	Specifies a Type S thermocouple
Dbk19TCTypeR	Specifies a Type R thermocouple
Dbk19TCTypeB	Specifies a Type B thermocouple

avg	
Definition	Description
avg = 0	Specifies block averagingall scans are averaged together to compute a single value for each channel
avg = 1	Specifies no averagingeach scan's readings are converted into measured signals
avg ≥ 2	Specifies moving averageeach scan's readings are averaged with the avg-1 preceding scans' readings before conversion

Returns

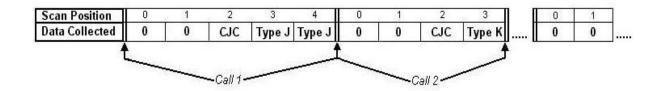
DerrTCE_TYPEInvalid thermocouple typeDerrTCE_PARAMParameter out-of-rangeDerrNoErrorNo error

For more details on error messages refer to the Daq Error Table.

Function Usage

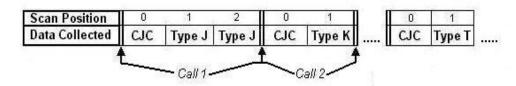
For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).


See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

Note: The following example assumes a CJC position of "0" and a Channel Zero position of "1." The position of these channels is device dependent. Refer to your device-specific hardware documentation to determine the appropriate position of these channels for your application.


The daqCvtTCSetup function is used to set the values required to convert raw thermocouple (T/C) data to data on a Celsius scale. It must be follwed with the daqCvtTCConvert function to actually convert the data. For convenience, both setup and conversion can be performed at once by daqCvtTCSetupConvert. All of the T/C conversion functions (i.e., functions of the form daqCvtTC...) can convert several consecutive scans of data in a single invocation.

The cjcPosition parameter determines the positon of the CJC reading in the scan group. Each scan of temperature data must include a reading of the CJC signal on the expansion board to which the thermocouples are attached. If zero compensation is being used, then the first two scans in each group are reserved for zero compensation data, and the CJC scan must follow immediately thereafter. The illustration below shows a how a typical T/C acquisition with zero compensation would collect data:

The first reading of the scan is position 0, and the last reading is (nscan-1). The thermocouple signal readings must immediately follow the CJC reading in the scan data, so the first thermocouple signal must be at scan position (cjcPosition+1), the next is at (cjcPosition+2), and so on. In the illustration, we see that two type J thermocouple readings are taken directly after the CJC scan. In the following scan group, two zero scans are followed by a CJC scan, which is itself followed by one type K thermocouple scan. Note that for any single call of the conversion function, all thermocouples in a scan group must be of the same type.

If zero compensation is not being used in a scan, the CJC scan is placed in position 0, followed by the thermocouple scans. The following illustration shows how this data would be organized:

The CJC readings must be taken with the appropriate gains set with the daqAdcSetScan function. The required gain settings for the CJC and thermocouple channels change depending on the unipolar/bipolar mode—see the daqCvtTCConvert function for specific info on T/C gains settings.

Moving Averages

To better illustrate the moving average feature of the avg parameter, suppose the avg value is set to 3. Since each scan's readings are averaged with the preceding scan, the results from the first scan (which has no preceding scan) are not averaged at all. However, the results from the second scan are averaged with the first scan, and the results from the third scan are averaged with the preceding two scans. After the third scan, each subsequent scan is averaged with the preceding two scans (since the avg value is 3, and avg-1 is two). In another instance, if the avg value is set to 5, then each scan after the fifth scan would be averaged with the four preceding it.

Prototypes

C/C++

daqCvtTCSetup(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType, BOOL bipolar, DWORD avg);

Visual BASIC

VBdaqCvtTCSetup&(ByVal nscan&, ByVal cjcPosition&, ByVal ntc&, ByVal tcType&, ByVal bipolar&, ByVal avg&)

Program References

DBK19EX.CPP

daqCvtTCSetupConvert and daqCvtTCSetupConvertF

Also See: daqCvtTCConvert, daqCvtTCConvertF, daqCvtTCSetup

Format

daqCvtCSetupConvert(nscan, cjcPosition, ntc, tcType, bipolar, avg, counts, scans, temp, ntemp)

Purpose

daqCvtTCSetupConvert and daqCvtTCSetupConvertF are each used to set up and convert raw thermocouple (T/C) data to data on a Celsius scale. See Note 1.

Parameter Summary

Parameter	Туре	Description	
nscan	DWORD	Number of channel readings in a single scan	
cjcPosition	DWORD	Position of the CJC reading within the scan	
ntc	DWORD	Number of thermocouple readings that immediately follow the CJC reading within the scan	
tcType	ТСТуре	Type of thermocouples being measured	
bipolar	BOOL	Must be set true if the readings were acquired with the device set for	
		bipolar operation; must be set false for unipolar operation	
avg	DWORD	Type of averaging to use	
counts	PWORD	Array of raw data from one or more scans	
scans	DWORD	Number of scans of raw data in counts array (number of pre-trigger + post-	
		trigger scans)	
temp	PSHORT	Variable array to hold converted temperature results (see Note 1)	
ntemp	DWORD	Number of entries in the temperature array	

Parameter Values

nscan: valid values range from 2 to 512; this number should be equal to: [(the number of T/Cs) + (the number of CJCs) + (any zero readings) + (any additional voltage readings)]

cjcPosition: valid values depend on whether or not zero compensation is being used: values range from 0 to (nscan-2) with no zero compensation, and from 2 to (nscan-2) with zero

compensation

- ntc: valid values range from 1 to [(nscan-1)-cjcPosition]
- tcType: see table below
- bipolar: valid values are either true ($\neq 0$) or false (= 0)
- avg: see table below
- counts: valid values range from 0 to 65,536 (each raw data item may be any 16-bit value)
- scans: valid value range from 1 to 4,294,967,295; however, memory limitations may apply
- temp: valid converted values stored in this array range from -2,000 (-200°C) to +13,720 (+1,372°C), depending on the thermocouple type. (See Note 1)
- ntemp: the value of the ntemp parameter should be equal to number of T/Cs specified in setup times the number of scans. If averaging is used, then ntemp should be equal to: [(number of T/Cs) * (scans) * (the value of the avg parameter as set in the daqCvtTCSetup function)]
- **Note 1**: daqCvtTCSetupConvert converts temperature readings to values in tenths of degrees Celsius (0.1°C). daqCvtTCSetupConvertF stores actual temperature values, i.e., actual instead of a value converted to the nearest tenth of a degree °C.

Parameter Type Definitions

tcType-(TCType)	DBK19 and DBK52
Definition	Description
Dbk19TCTypeJ	Specifies a Type J thermocouple
Dbk19TCTypeK	Specifies a Type K thermocouple
Dbk19TCTypeT	Specifies a Type T thermocouple
Dbk19TCTypeE	Specifies a Type E thermocouple
Dbk19TCTypeN28	Specifies a Type N28 thermocouple
Dbk19TCTypeN14	Specifies a Type N14 thermocouple
Dbk19TCTypeS	Specifies a Type S thermocouple
Dbk19TCTypeR	Specifies a Type R thermocouple
Dbk19TCTypeB	Specifies a Type B thermocouple

tcType-(TCType)	DBK81,DBK82,DBK83,DBK84,and DaqBook/2020
Definition	Description
Dbk81TCTypeJ	Specifies a Type J thermocouple
Dbk81TCTypeK	Specifies a Type K thermocouple
Dbk81TCTypeT	Specifies a Type T thermocouple
Dbk81TCTypeE	Specifies a Type E thermocouple
Dbk81TCTypeN28	Specifies a Type N28 thermocouple
Dbk81TCTypeN14	Specifies a Type N14 thermocouple
Dbk81TCTypeS	Specifies a Type S thermocouple
Dbk81TCTypeR	Specifies a Type R thermocouple
Dbk81TCTypeB	Specifies a Type B thermocouple

tcType-(TCType)	DBK90 and DBK100
Definition	Description
Dbk90TCTypeJ	Specifies a Type J thermocouple
Dbk90TCTypeK	Specifies a Type K thermocouple
Dbk90TCTypeT	Specifies a Type T thermocouple
Dbk90TCTypeE	Specifies a Type E thermocouple
Dbk90TCTypeN28	Specifies a Type N28 thermocouple
Dbk90TCTypeN14	Specifies a Type N14 thermocouple
Dbk90TCTypeS	Specifies a Type S thermocouple
Dbk90TCTypeR	Specifies a Type R thermocouple
Dbk90TCTypeB	Specifies a Type B thermocouple

avg	
Definition	Description
avg = 0	Specifies block averagingall scans are averaged together to compute a single value for each channel
avg = 1	Specifies no averagingeach scan's readings are converted into measured signals
avg ≥ 2	Specifies moving averageeach scan's readings are averaged with the avg-1 preceding scans' readings before conversion

Returns

DerrTCE_TYPEInvalid thermocouple typeDerrTCE_PARAMParameter out-of-rangeDerrNoErrorNo error

For more details on error messages refer to the Daq Error Table.

Function Usage

For all functions of the form daqCvt..., raw data to be converted *must* be unsigned (i.e., the dafUnsigned value must be set using the daqAdcSetScan function).

For T/C and RTD conversion, users of Daq/2000 Series devices* and/or Daq PC Cards must be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V) or bipolar (-5 V to +5 V).

See the "T/C Gains Settings" section in the daqCvtTCConvert function entry for the appropriate settings.

* Daq/2000 Series devices include DaqBook/2000 Series, DaqScan/2000 Series, DaqLab/2000 Series, and DaqBoard/2000 Series devices.

The daqCvtTCSetupConvert function combines the operationns of the both the daqCvtTCConvert function and the daqCvtTCSetup function. For more detailed information on using thermocouples (T/Cs) and converting data refer to the entries for daqCvtTCConvert and daqCvtTCSetup

The daqCvtTCSetupConvertF function combines the operationns of the both the daqCvtTCConvertF function and the daqCvtTCSetup function. For more detailed information on using thermocouples (T/Cs) and converting data refer to the entries for daqCvtTCConvertF and daqCvtTCSetup

Prototypes

C/C++

daqCvtTCSetupConvert(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType
tcType, BOOL bipolar, DWORD avg, PWORD counts, DWORD scans, PSHORT temp,
DWORD ntemp);

Visual BASIC

VBdaqCvtTCSetupConvert&(ByVal nscan&, ByVal cjcPosition&, ByVal ntc&, ByVal tcType&, ByVal bipolar&, ByVal avg&, counts%, ByVal scans&, temp%, ByVal ntemp&)

Program References

DBK19EX.CPP, DBK52EX.CPP, DBK81EX.CPP, DBK82_83EX.CPP, DBK90EX.CPP

This page is intentionally blank.

daqDacSetOutputMode

Also See: daqDacWt, daqDacWtMany

Format

daqDacSetOutputMode(handle, deviceType, chan, outputMode)

Purpose

daqDacSetOutputMode sets the output mode of the digital-to-analog converter (DAC) or digital pattern output operations for the specified channel.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the DAC waveform
		output mode will be set
deviceType	DaqDacDeviceType	Specifies the device type
chan	DWORD	Specifies the DAC / digital output channel number
outputMode	DaqDacOutputMode	Defines the DAC waveform output mode to use

Parameter Values

handle: obtained from the dagOpen function.

deviceType: see the table in the "Selecting the Output Channel" section below for details

chan: valid values depend on the value of the deviceType parameter; see the table in the "Selecting the Output Channel" section below for details

outputMode: see table below

Parameter Type Definitions

OutputMode-(DaqDacOutputMode)		
Definition	ion Description	
DdomVoltage	Specifies a single, DC voltage or current output mode.	
DdomStaticWave	Specifies static waveform/pattern output mode.	
DdomDynamicWave	Specifies dynamic waveform/pattern output mode. (Does Not Apply to DaqBoard/500 Series)	
DdomDigitalDirect	Specifies direct mode for P3 digital. (Does Not Apply to DaqBoard/500 Series or /3000 Series)	
DdomBipolar	Specifies bipolar output mode. (DaqBoard/500 only)	

Returns

DerrNoError No error

Function Usage

Normally, the daqDacSetOutputMode function must be called prior to any output operations on the specified channels. Generally, this function configures the specified port for DC style or waveform output from DACs or pattern output from the 16-bit P3 DIO port.

Selecting the Output Channel

The output channel for which to set the mode is determined by the chan and the deviceType parameters. The device type is represented by predefined settings described below. The channel is simply an integer (starting at 0) which represents the channel location relative to the first channel of the same type. The table below describes this relationship:

Device Type (deviceType)	Channel (chan)	Description
DddtLocal	0	Set output mode for DAC0 on the main unit device
	1	Set output mode for DAC1 on the main unit device
	2	Set output mode for DAC2 on the main unit device
	3	Set output mode for DAC3 on the main unit device
DddtDbk	N*4 + 0	Set output mode for channel0 on a DBK2 or DBK5 on bank N
	N*4 + 1	Set output mode for channel1 on a DBK2 or DBK5 on bank N
	N*4 + 2	Set output mode for channel2 on a DBK2 or DBK5 on bank N
	N*4 + 3	Set output mode for channel3 on a DBK2 or DBK5 on bank N
DddtLocalDigital	0	Set Output Mode for the local P3 16-bit DIO channel on the main unit. This setting only applies when using the local P3 16-bit DIO channel for streamed output.

Setting the Output Mode

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to digital-to-analog converter (DAC) channels and/or digital input/output (DIO) channels that are synchronously updated by a clock source defined by the application.

The outputMode parameter indicates the type of output update to be performed on the specified DAC/Digital output channel. Generally, the output mode is either direct, asynchronous update or a waveform/pattern output.

There are two basic types of waveform/pattern output. One is a static mode that allows downloading the entire waveform/pattern output buffer to the internal FIFO on the device for unattended output. The other is a dynamic mode that allows continuous update of the output by the application. The settings for all of the possible modes are as follows:

DdomVoltage- Specifies a single, DC voltage or current output mode. This mode defines the output of the specified DAC channel to be updated only when written to explicitly. The valid range over which actual voltage and current values can be written to the port depends upon the specified range of the local DAC device or the DBK2 or DBK5 (see output range specifications for your device). When this mode is set with the daqDacSetOutputMode function, no change to the current output state of the channel will be performed. See daqDacWt and daqDacWtMany for the actual writing of the DAC channel values. No waveform/pattern outputs can be generated for the specified channel while the channel is in the DdomVoltage mode. This setting represents the default setting for all channels.

DdomStaticWave- Specifies static waveform/pattern output mode. This mode allows the generation of a non-streamed waveform output to the specified DAC/Digital Output channel. In this mode, the aggregate size of the waveform/pattern output buffer must be less than or equal to the size of the internal waveform/pattern output FIFO in the device. This allows the entire waveform/pattern output buffer to be loaded into the device's internal output FIFO. Once the sample updates have been transferred (or downloaded) to the device, the device is responsible for outputting the data. No other further sample update management needs to be performed by the application (other than monitoring the progress of the waveform/pattern output). While the size is limited and no changes to the waveform can be made once the output is started, this mode has the advantage of not having to periodically feed output data (through the program) to the device for the waveform/pattern output to continue.

Device	Output FIFO Size (Static Waveform/Pattern Output)
DaqBoard (ISA)	4,096 total update samples
DaqBoard/500	128,000 total update samples (allocated in PC memory)
DaqBoard/1000 Series	128,000 total update samples (allocated in PC memory)
DaqBoard/2000 Series Devices which support DAC	512,000 total update samples (allocated in PC memory)
DaqBook/2000 Series DaqLab/2000 Series DaqScan/2000 Series	128,000 total update samples (internal FIFO)
DaqBoard/3000 Series	512,000 total update samples (allocated in PC memory)

The aggregate waveform/pattern output buffer size is equal to (the number of sample updates for each channel) * (the number of channels configured for static waveform mode).

DdomDynamicWave- Specifies dynamic waveform/pattern output mode. This mode allows continual, dynamic updating of the waveform/pattern output. Dynamic waveform/pattern output generation is not size dependent, and waveform/pattern output updating can be performed indefinitely. Actual waveform/pattern output generation updating is performed by continually feeding waveform/pattern data to the device using the daqDacWaveSetBuffer and daqDacTransferStart routines to continually fill the device's waveform/pattern output FIFO. The waveform transfer operation to the waveform/pattern output FIFO of the device can be halted at any time with daqDacTransferStop; Stopping the transfer to the waveform/pattern output FIFO of the device, however, will not stop the device from output the fifto, the daqAdcDisarm function must be used.

The DdomDynamicWave mode is not valid forDaqBoard/500 Series boards.

Using Static and Dynamic Output Modes

The DdomStaticWave and DdomDynamicWave output modes allow the configuration of one or more channels for waveform/pattern output from DAC or digital input/output (DIO) channels. However, the DdomStaticWave and DdomDynamicWave output modes have special considerations when they are used.

Both modes allow waveform/pattern output to any of the available DAC or DIO channels. However, when using these modes, each channel must be configured to use the same mode--either DdomStaticWave or DdomDynamicWave. So, it is not possible to mix DdomStaticWave and DdomStaticWave configurations on the same device for a given waveform/pattern output. There is no problem with configuring one or more channels as direct (DdomVoltage) output along with other channels that are configured for waveform/pattern output.

When configuring the update transfer buffer via daqDacWaveSetBuffer in static mode, the update transfer buffer stores the update samples in a seperate buffer for each channel. However, in dynamic mode the update transfer buffer stores the update samples for all the channels configured for waveform/pattern output, not just for the channel specified. Since the buffer is shared, all waveform/pattern output channels must have the same number of sample updates. This means that the transfer buffer size depends upon the total number of channels configured for waveform/pattern output and the total number of updates for each channel. See daqDacWaveSetBuffer for more details.

The update clock for all waveform/pattern output channels must be the same source. All DAC and P3 16-bit Digital channels must use the same update clock for updating their outputs. See the entry for dagDacWaveSetClockSource for more details.

The DaqBoard/2000 Series devices allow digital output data to be streamed to the P3 16-bit DIO port for pattern output. This digital output data can be streamed concurrently with waveform output to the DAC channels specified using the same output update clock. Alternatively, the streamed digital output can be streamed exclusively to the P3 16-bit DIO output channel without generating waveform output to any of the DAC channels. However, P3 Digital Pattern Output and DAC waveform output cannot be performed concurrently with *different* update clocks.

Prototypes

C/C++

daqDacSetOutputMode(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, DaqDacOutputMode outputMode);

Visual BASIC

VBdaqDacSetOutputMode&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal outputMode&)

Program References

DAQDACEX02.CPP, DAQDACEX03.CPP, DBK02EX.CPP, DBK05.CPP, DAQEX.FRM (VB)

daqDacTransferGetStat

Also See: daqDacWaveSetBuffer, daqDacTransferStart, daqDacTransferStop

Format

daqDacTransferGetStat(handle, deviceType, chan, active, retCount)

Purpose

daqDacTransferGetStat returns the current status and the total transfer count of the current waveform/pattern output channel.

DAC output mode must be set to DdomDynamicWave for this function to be called. See the dagDacSetOutputMode function for details.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle of the device from which to retrieve current
		waveform/pattern output transfer status
deviceType	DaqDacDeviceType	Specifies the DAC / digital output type
chan	DWORD	Specifies the DAC / digital output channel
active	PDWORD	Indicates the current state of the acquisition and transfer in
		the form of a bit mask
retCount	PDWORD	Total number of waveform/pattern output samples
		transferred for the current waveform/pattern output transfer

Parameter Values

handle: obtained from the dagOpen function

deviceType: see table below

chan: valid values depend on the value chosen for the deviceType parameter; see deviceType table below

active: see table below

retCount: the total number of updates can range from 0 to 4,294,967,295 updates; however, memory limitations may apply

Parameter Type Definitions

deviceType-(DaqDacDeviceType)		
Definition	chan Value	Description
DddtLocal	0	Retrieve the status of a waveform/pattern output transfer where DAC0 is one of the channels being output.
	1	Retrieve the status of a waveform/pattern output transfer where DAC1 is one of the channels being output.
	2	Retrieve the status of a waveform/pattern output transfer where DAC2 is one of the channels being output.
	3	Retrieve the status of a waveform/pattern output transfer where DAC3 is one of the channels being output.
DddtLocalDigital	0	Retrieve the status of a waveform/pattern output transfer where the 16-bit P3 Digital port is one of the channels being output.

active	
Definition	Description
DdafWaveformActive	A waveform/pattern output is active. The trigger may or may not yet have occurred, but the waveform/pattern output has at least been armed.
DdafWaveformTriggered	The waveform/pattern output has been triggered. Data is now being streamed from the specified channels of the devices DAC channel(s) and/or P3 16-bit digital port.
DdafTransferActive	A transfer from PC-based buffers/files to the output FIFO on the device is currently active.

Returns

DerrNoError No error

Function Usage

The daqDacTransferGetStat function will get the current status of a dynamic waveform/pattern output transfer for the specified DAC or digital output channel.

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to digital-to-analog converter (DAC) channels and/or digital input/output (DIO) channels that are synchronously updated by a clock source defined by the application.

Waveform/Pattern Output Progress

In the subsequent discussion, these three terms are used as follows:

- A *sample* refers to the data for a single output channel.
- An *update* refers to data for all channels that are configured for waveform/pattern output. An update consists of all data required to update all channels during a single output clock pulse.
- The *write position* of the buffer described below is a pointer to the next update block to be written to the internal FIFO on the device. If using a circular buffer, then the data that has already been written but not yet updated by the application may then be updated by the application. When using a circular buffer, it is left to the application to maintain the pointer(s) to the data that it has updated.

The retCount parameter can be defined in two manners, depending on the output mode. If the output is set to dynamic mode with the DdwmNShot or DdwmInfinite values set (using the daqDacWaveSetMode function), retCount is equal to the number of updates read in from the dynamic buffer. However, if either the output is set to either static mode, or dynamic mode with the DdwmNFileIterations value set (using the daqDacWaveSetMode function), retCount is equal to the number of DAC updates since triggered. See the daqDacWaveSetBuffer function on for more information on buffer allocation modes.

The current write position within the buffer (measured in updates) is equal to

retCount mod scanCount

where *mod* is defined as the integer remainder of dividing retCount by scanCount (as defined by the daqDacWaveSetBuffer function). Since all channels in the waveform/pattern output are updated concurrently, this number represents the number of updates performed for all channels.

The current write position within the buffer (measured in total samples) is equal to

(retCount mod scanCount) * (total output channels)

where the value of (total output channels) is the total number of channels that are configured for waveform/pattern output (channels whose output mode is set to DdomStaticWave or DdomDynamicWave). Since each sample is a 2-byte word, this number can be multiplied by 2 to get the current write position within the buffer in bytes.

Putting it all together

The following table shows a number of different scenarios (each assumes a total scan count of 1,000,000 output updates). These scenarios are representative of some typical waveform/pattern output states but do not necessarily represent all of the possible states.

States (active)	Progress (retCount)	Description
DdafWaveformActive + DdafWaveformTriggered + DdafTransferActive	210,000	The waveform/pattern output is active and has been triggered and is currently outputting updates to the DAC/Digital Output ports specified. A transfer to buffer is also active and a total of 210,000 updates have been output so far.
DdafWaveformActive + DdafTransferActive	0	The waveform/pattern output has been armed but has not yet been triggered. A transfer to buffer is also active but no updates have been output so far because the trigger event has not yet occurred.
DdafTransferActive	0	A waveform/pattern output transfer has been configured and started (daqAdcTransferSetBuffer, daqDacTransferStart) but the acquisition has not yet been armed. <i>The acquisition needs to be armed using</i> daqDacWaveArm.
(0)	1,000,000	The waveform/pattern output has triggered and has completed. The transfer is not active and 1,000,000 updates have been performed. So the both the transfer and the waveform/pattern output from the device are complete.

Prototypes

C/C++

daqDacTransferGetStat(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, PDWORD active, PDWORD retCount);

Visual BASIC

VBdaqDacTransferGetStat&(ByVal handle&, ByVal deviceType&, ByVal chan&, active&, retCount&)

Program References

None

daqDacTransferStart

Also See: daqDacWaveSetBuffer, daqDacTransferGetStat daqDacTransferStop, daqDacWaveDisarm

Format

daqDacTransferStart(handle, deviceType, chan)

Purpose

daqDacTransferStart initiates a dynamic waveform/pattern output transfer to the output FIFO on the specified device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which a waveform transfer is
		to be initiated
deviceType	DaqDacDeviceType	Specifies the type
chan	DWORD	Specifies the channel

Parameter Values

handle: obtained from the dagOpen function

- deviceType: see table below
- chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below

Parameter Type Definitions

DeviceType-(DaqDacDeviceType)		
Definition	chan Value Description	
DddtLocal	0	Start the transfer of waveform/pattern output data where DAC0 is one of the channels being output.
	1	Start the transfer of waveform/pattern output data where DAC1 is one of the channels being output.
	2	Start the transfer of waveform/pattern output data where DAC2 is one of the channels being output.
	3	Start the transfer of waveform/pattern output data where DAC3 is one of the channels being output.
DddtLocalDigital	0	Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is one of the channels being output.

Returns

DerrNoError

No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to digital-to-analog converter (DAC) channels and/or digital input/output (DIO) channels that are synchronously updated by a clock source defined by the application.

The waveform/pattern output transfer will be performed from the waveform/pattern output buffer configured using the daqDacWaveSetBuffer function to the device's internal output FIFO. This transfer will continue until:

- The entire waveform/pattern output buffer has been transferred to the internal output FIFO on the device.
- The transfer is halted (with the daqDacTransferStop function).
- The waveform/pattern output is disarmed (with the daqDacWaveDisarm function).

The waveform output can be specified for any DAC channel or the 16-bit DIO channel located on the P3 port, However, the transfer is initiated for all channels configured for dynamic waveform/pattern output mode (DdomDynamicWave). The daqDacSetOutputMode function should be used to set the output mode to DdomDynamicWave prior to calling this function.

This function should be used only with waveform/pattern output modes.

Prototypes

C/C++

daqDacTransferStart(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD
chan);

Visual BASIC

VBdaqDacTransferStart&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Program References

None

daqDacTransferStop

Also See: daqDacWaveSetBuffer, daqDacTransferGetStat, daqDacTransferStart, daqDacWaveDisarm

Format

daqDacTransferStop(handle, deviceType, chan)

Purpose

daqDacTransferStop stops a dynamic waveform/pattern output transfer for the specified DAC or digital output channel if one is currently active.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the current DAC waveform
		transfer will be stopped
deviceType	DaqDacDeviceType	Specifies the DAC type
chan	DWORD	Specifies the DAC channel

Parameter Values

handle: obtained from the daqOpen function

deviceType: see table below

chan: valid values depend on the value chosen for the deviceType parameter; see the deviceType table below

Parameter Type Definitions

DeviceType-(DaqDacDeviceType)		
Definition	chan Value Description	
DddtLocal	0	Stop the transfer of waveform/pattern output data where DAC0 is one of the channels being output.
	1	Stop the transfer of waveform/pattern output data where DAC1 is one of the channels being output.
	2	Stop the transfer of waveform/pattern output data where DAC2 is one of the channels being output.
	3	Stop the transfer of waveform/pattern output data where DAC3 is one of the channels being output.
DddtLocalDigital	0	Stop the transfer waveform/pattern output data where the 16-bit P3 Digital port is one of the channels being output.

Returns

DerrNoError

No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to digital-to-analog converter (DAC) channels and/or digital input/output (DIO) channels that are synchronously updated by a clock source defined by the application.

The daqDacTransferStop function will terminate the transfer of waveform/pattern output data; however, it will not halt the waveform output on the specified channel. Output data already sent to the devices waveform/pattern output FIFO will continue to be output until there is no more data in the FIFO. The transfer may be re-initiated for the same waveform/pattern output transfer buffer or another buffer by again calling the daqDacTransferStart function. To terminate the waveform output as well as the transfer, refer to the daqDacWaveDisarm function. The output mode must be set to DdomDynamicWave via the daqDacSetOutputMode function prior to calling this function.

This function should be used only with waveform/pattern output modes.

Prototypes

C/C++

daqDacTransferStop(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD
chan);

Visual BASIC

VBdaqDacTransferStop&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Program References

None

daqDacWaveArm

Format

Also See: daqDacWaveDisarm

daqDacWaveArm(handle, deviceType)

Purpose

daqDacWaveArm arms a waveform/pattern output for all channels configured for waveform/pattern output modes for the specified device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which a DAC waveform output will be armed
deviceType	DaqDacDeviceType	Specifies the DAC type

Parameter Values

handle: obtained from the dagOpen function deviceType: see table below

Parameter Type Definitions

deviceType-(DaqDacDeviceType)					
Definition Description					
DddtLocal	DAC output from P1 for ISA type DaqBoards;				
	DAC output from P3.				
DddtLocalDigital	DAC output from the 16-bit P3 digital port.				

Returns

DerrNoError No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to digital-to-analog converter (DAC) channels and/or digital input/output (DIO) channels that are synchronously updated by a clock source defined by the application.

The daqDacWaveArm function enables a waveform/pattern output based upon the current waveform/pattern output channel configuration. Channels configured for waveform/pattern output need to be set either DdomStaticWave or DdomDynamicWave output mode to be included in the waveform/pattern output operation

 $(see {\tt daqDacSetOutputMode}\ for\ more\ details\ on\ configuration\ channel\ output\ modes).$

Before Invoking daqDacWaveArm

This function requires that all waveform channels are properly set to the correct modes and that the waveform/pattern output trigger events, the output modes, and the update clock are all set before this function is invoked. Specifically, the following steps need to be performed before calling this function:

- Configure all the output channels to be included in the waveform/pattern output as static or dynamic output mode (DdomStaticWave or DdomDynamicWave) via the daqDacSetOutputMode function.
- If streaming output from a file, then set the disk file using the daqDacWaveSetDiskFile for each channel that as been configured for waveform/pattern output (the disk file should name should be the same for all output channels).
- Set the waveform/pattern output clock source for each output channel via the daqDacWaveSetClockSource function.
- If the selected clock source uses the internal waveform/pattern output pacer clock, then set the output update frequency using the daqDacWaveSetFreq function.
- Set the trigger event which will initiate the waveform/pattern output via the daqDacWaveSetTrig function.
- Configure the update mode and waveform/pattern output termination conditions using the daqDacWaveSetMode function.
- Though it is not required, it is also recommended that the transfer buffer is allocated and the transfer is enabled prior to invoking this function (daqDacWaveSetBuffer and the daqDacTransferStart functions.

After Invoking daqDacWaveArm

Once the preliminary steps have been taken to setup up daqDacWaveArm, it can be used to arm the device for waveform/pattern output. However, the device will not begin the actual output of data to the ports configured for waveform/pattern output until the trigger event has occurred (unless the trigger event is configured as DdtsImmediate). The trigger event is configured using the daqDacWaveSetTrig function.

Once triggered, the device will begin outputting data from its internal output FIFO. Therefore, it is important to have already transferred at least the first block of data from the application allocated output transfer buffer to the device's internal output buffer before the trigger event occurs. For more information on transferring data from the application to the internal output FIFO, see daqDacWaveSetBuffer and daqDacTransferStart. While the waveform/pattern output operation is occurring, the progress of the waveform/pattern output may be monitored using the daqDacTransferStart function.

The waveform/pattern output will terminate based upon the update mode set by the daqDacWaveSetMode function. Regardless of the update mode, however, any waveform/pattern output may be terminated by issuing the daqDacWaveDisarm function for the device.

When this function is invoked, the driver determines if there are any problems with any of the waveform/pattern output configuration parameters issued by application. Since the bulk of the actual waveform/pattern output configuration is performed when this function is invoked, any potential configuration problems or parameter value conflicts will be detected here.

Prototypes

C/C++

daqDacWaveArm(DaqHandleT handle, DaqDacDeviceType deviceType);

Visual BASIC

VBdaqDacWaveArm&(ByVal handle&, ByVal deviceType&)

Program References

DAQDACEX02.CPP, DAQDACEX03.CPP

daqDacWaveDisarm

Format

Also See: daqDacWaveArm

daqDacWaveDisarm(handle, deviceType)

Purpose

daqDacWaveDisarm disarms a waveform/pattern output if one is active on the specified device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which a DAC waveform output will be disarmed
deviceType	DaqDacDeviceType	Specifies the DAC type

Parameter Values

handle: obtained from the dagOpen function deviceType: see table below

Parameter Type Definitions

deviceType-(DaqDacDeviceType)					
Definition Description					
DddtLocal	DAC output from P2 of the device				
DddtLocalDigital	DAC output from the 16-bit P3 digital port				

Returns

DerrNoError No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to digital-to-analog converter (DAC) channels and/or digital input/output (DIO) channels that are synchronously updated by a clock source defined by the application.

The daqDacWaveDisarm function will disable the waveform/pattern output on the specified device and terminate any output buffer transfers that are currently active (see daqDacTransferStop for more details on output buffer transfer termination). Waveform/pattern output will be terminated immediately, regardless of the current state of the waveform/pattern output or the state of the digital-to-analog converter (DAC) or digital input/output (DIO) channels from which the waveform/pattern output is being generated.

Prototypes

C/C++

daqDacWaveDisarm(DaqHandleT handle, DaqDacDeviceType deviceType);

Visual BASIC

VBdaqDacWaveDisarm&(ByVal handle&, ByVal deviceType&)

Program References

DAQDACEX02.CPP, DAQDACEX03.CPP

Also See: daqDacWaveArm, daqDacWaveDisarm, daqDacWaveSetFreq

Format

daqDacWaveGetFreq(handle, deviceType, chan, freq)

Purpose

daqDacWaveGetFreq retrieves the current setting for the waveform/pattern output update frequency (in Hz) for the specified device (selected by daqDacWaveSetClockSource).

Parameter Summary

Parameter	Туре	Description				
handle	DaqHandleT	Handle to the device from which to retrieve the current waveform output frequency				
dorri goTrmo						
deviceType	DaqDacDeviceType	Specifies the DAC type				
chan	DWORD	Specifies the DAC channel				
freq	PFLOAT	Returns the current DAC waveform output frequency				
		setting				

Parameter Values

handle: obtained from the dagOpen function

- deviceType: see table below
- chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below
- freq: pointer to a single precision floating point value (4 bytes) that will store the update frequency update upon return from this function.

Parameter Type Definitions

DeviceType-(DaqDacDeviceType)						
Definition	Description					
DddtLocal	0	Start the transfer of waveform/pattern output data where DAC0 is one of the channels being output.				
	1	Start the transfer of waveform/pattern output data where DAC1 is one of the channels being output.				
	2	Start the transfer of waveform/pattern output data where DAC2 is one of the channels being output.				
	3	Start the transfer of waveform/pattern output data where DAC3 is one of the channels being output.				
DddtLocalDigital	0	Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is one of the channels being output.				

Returns

DerrNoError No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to digital-to-analog converter (DAC) channels and/or digital input/output (DIO) channels that are synchronously updated by a clock source defined by the application.

The daqDacWaveGetFreq function returns the frequency via the freq parameter, The frequency is dependent upon the clock source chosen for the selected device (see daqDacWaveSetClockSource. The freq parameter is a pointer to a single-precision floating point variable that must be allocated by the calling application. The waveform/pattern output update frequency is programmed with the daqDacWaveSetFreq function.

The returned frequency value (freq) will not be valid until the waveform is armed with the daqDacWaveArm function.

Getting the Actual Output Update Frequency

The frequency programmed using the daqDacWaveSetFreq function may not be obtainable. The reason for this is that either the frequency specified was outside of the operating update frequency of the output pacer clock, or the frequency is not attainable due to the resolution of the pacer clock. If the latter is the case, then the output pacer clock will be programmed to the nearest attainable frequency. If the frequency is outside of the operating range of the pacer clock, then an error will be generated. See the daqDacWaveGetFreq function for more information on the actual setting of the output pacer clock frequency.

The specifications section of the device user's manual provides the frequency settings for the device.

Prototypes

C/C++

daqDacWaveGetFreq(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD
chan, PFLOAT freq);

Visual BASIC

VBdaqDacWaveGetFreq&(ByVal handle&, ByVal deviceType&, ByVal chan&, freq!)

Program References

None

daqDacWaveSetBuffer

Also See: daqDacTransferStart, daqDacTransferStop

Format

```
daqDacWaveSetBuffer(handle, deviceType, chan, buf, scanCount,
transferMask)
```

Purpose

daqDacWaveSetBuffer configures a waveform/pattern output transfer buffer for the specified device and channel.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which a DAC waveform transfer
		buffer will be configured
deviceType	DaqDacDeviceType	Specifies the DAC type
chan	DWORD	Specifies the DAC channel
buf	PWORD	Pointer to the user allocated waveform transfer buffer
scanCount	DWORD	Length of the waveform buffer in output samples
transferMask	DWORD	Configures the buffer transfer mode

Parameter Values

handle: obtained from the daqOpen function

deviceType: see table below

- chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below
- buf: pointer to buffer which contains scanCount updates for each channel in waveform/pattern output mode
- scanCount: length of the buffer in updates for each channel can be 1 to 4,294,967,295; however, memory
 limitations may apply

transferMask: see table below

Parameter Type Definitions

DeviceType-(DaqDacDeviceType)						
Definition chan Value Description						
DddtLocal	0	Start the transfer of waveform/pattern output data where DAC0 is one of the channels being output.				
	1	Start the transfer of waveform/pattern output data where DAC1 is one of the channels being output.				
	2	Start the transfer of waveform/pattern output data where DAC2 is one of the channels being output.				
	3	Start the transfer of waveform/pattern output data where DAC3 is one of the channels being output.				
DddtLocalDigital	0	Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is one of the channels being output.				

transferMask	
Definition	Description
DdtmUserBuffer	Selects a user buffer for waveform/pattern output
DdtmDriverBuffer	Selects a driver buffer for waveform/pattern output

Returns

DerrNoError No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to digital-to-analog converter (DAC) channels and/or digital input/output (DIO) channels that are synchronously updated by a clock source defined by the application.

The daqDacWaveSetBuffer function allows you to configure a waveform/pattern output transfer buffer for the specified device and channel. This function may be used to configure a user-supplied buffer for transferring user supplied data to any of the output channels capable of performing waveform or streamed output.

Buffer Location, Length, and Settings

The buf parameter is the address of the waveform/pattern output transfer buffer allocated by the application. If the application is supplying the buffer, then this value must be an address to an adequately allocated buffer

The scanCount parameter is the total length of the output transfer buffer in updates per channel. The number of channels configured for waveform/pattern output determines the total number of samples required for each update. Therefore the buffer size to be allocated (in bytes):

Buffer Management

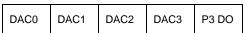
Buffer management for waveform/pattern output depends upon the output mode setting, described as follows:

Static Waveform/Pattern Mode

If the waveform/pattern output mode has been defined to be static (see daqDacSetOutputMode, then the following steps must be performed to complete the static waveform/pattern output operation:

- Specify the output transfer buffer location and details with the daqDacWaveSetBuffer function. The specified buf parameter must point to memory which has already been allocated by the application prior to calling this function. The allocated buffer must be large enough to hold all of the output updates required for each channel to complete the entire static waveform/pattern output, as determined by the current waveform/pattern output channel configuration. The output data must fit entirely within the internal waveform/pattern output FIFO on the device.
- Configure any waveform/pattern settings (such as update mode, trigger sources, frequency settings that need to be configured.
- Call the daqDacTransferStart function to download the output transfer buffer into the internal waveform/pattern output FIFO on the device.
- Arm the waveform/pattern output by issuing the daqDacWaveSetTrig function.
- Trigger the waveform/pattern output (if necessary).
- The status of the static waveform/pattern output can be monitored by calling the dagDacTransferGetStat function.

Dynamic Waveform/Pattern Mode with Circular Buffer


If the waveform/pattern output mode has been defined to be dynamic (see daqDacSetOutputMode) and a circular output transfer buffer is to be used, then the following will need to be performed to complete the dynamic waveform/pattern output operation:

- Specify the output transfer buffer location and details with the daqDacWaveSetBuffer function. The specified buf parameter must point to memory which has already been allocated by the application prior to calling this function. The allocated buffer must be large enough to hold the number of output updates for each channel required for the block of data to be transferred as determined by the current waveform/pattern output channel configuration.
- Configure any waveform/pattern settings (such as update mode, trigger sources, frequency settings that need to be configured
- Call the daqDacTransferStart function to download the output transfer buffer into the internal waveform/pattern output FIFO on the device.
- Arm the waveform/pattern output by issuing the daqDacWaveSetTrig function.
- Trigger the waveform/pattern output (if necessary).
- Monitor status of the dynamic waveform/pattern output calling the daqDacTransferGetStat function. The total amount of data transferred from the circular output transfer buffer to the waveform/pattern output FIFO on the device will be returned in the retCount parameter. The current position of the next data block to be written to the waveform/pattern output FIFO on the device can be calculated using the value of the retCount parameter. Please refer to the daqDacTransferGetStat function for a complete discussion of calculating the current write position pointer.

In general, the size allocated should be at least large enough to handle any delays that may be encountered between buffer updates by the application without the buffer running completely empty. As the waveform/pattern output progresses, the waveform/pattern output FIFO on the device will be filled by emptying the unread data in the output transfer buffer. This value can vary, depending upon the ability of the application to frequently update the buffer, and the update rate at which the outputs are clocked. However, a good general rule is to make the size of the output transfer buffer at least that of the size of the waveform/pattern output FIFO on the device. The filling of the output FIFO with data in the output transfer buffer is performed automatically by the driver without checking whether the application has updated the buffer. Therefore, the application needs to be aware of the current write position within the buffer, as well as feeding new data updates to the buffer portions which have already been written but not updated. This function should be called with the DdtmCycleOn flag set.

Dynamic Output Transfer Buffer Organization

The output transfer buffer is organized into sequences of update data blocks. Each update data block represent the sample data necessary to update all output channels configured for waveform/pattern output. The sample data is ordered according to the output channel for which it will be output. Each update data block is ordered as follows:

If any of the above channels is not configured for waveform/pattern output, then it will simply not be included in the update data block--however, the channel ordering will not change. If, for example, a waveform/pattern output is configured for DAC0, DAC2 and P3 DO will have the following update data block:

The transfer output buffer is organized into update data blocks. When the output update clock fires, the next available update data block is loaded from the internal waveform/pattern output FIFO on the device to the port, which then presents the values to either the DAC or digital port for output.

		Data Pr	resented to	Outputs						
	DAC0	DAC1	DAC2	DAC3	P3D0	DAC0	DAC1	DAC2	DAC3	P3D0
						<u>i</u>				
l L	pdate cloc	k			Update	e clock				
	Processing Output FIFO							>		

Likewise, the buffer is organized in a similar manner.

DAC0	DAC1	DAC2	DAC3	P3D0	DAC0	DAC1	DAC2	DAC3	P3D0	
	Update Data Block 0					U	pdate Data	Block 1		

As the output FIFO empties, the driver will automatically transfer data from the output transfer buffer to the output FIFO on the device. This transfer process will continue until either the waveform/pattern output transfer is stopped via the daqDacTransferStop function, the waveform/pattern output is halted with the daqDacWaveDisarm function or the waveform/pattern output is normally terminated as defined by the daqDacWaveSetMode function.

Buffer Output Channel Data Format

The format for each update sample in the buffer is a 16-bit integer. This parameter is an integer value ranging from 0 to 65,535. This is a 16-bit value and the 16-bit value spans the range over which the output can vary, depending upon the specified range of the port for the device.

Some DAC channels use 16-bit D/A converters--in these converters, each bit in the 16-bit integer corresponds to one bit programmed to the D/A converter. However, some DAC channels have 12-bit D/A converters. In this case, the low order nibble (4-bits) of the 16-bit sample will be ignored.

The specifications section of the device user's manual provides the ranges and the associated resolution values for the device.

Prototypes

C/C++

daqDacWaveSetBuffer(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, PWORD buf, DWORD scanCount, DWORD transferMask);

Visual BASIC

VBdaqDacWaveSetBuffer&(ByVal handle&, ByVal deviceType&, ByVal chan&, buf%(), ByVal scanCount&, ByVal transferMask&)

Program References

DAQDACEX02.CPP

Also See: daqDacWaveSetFreq, daqDacWaveGetFreq

Format

daqDacWaveSetClockSource(handle, deviceType, chan, clockSource)

Purpose

daqDacWaveSetClockSource sets the clock source for waveform/pattern output to the digital-to-analog converter channels (DAC) and the digital input/output (DIO) channels.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the waveform output clock
		source will be set
deviceType	DaqDacDeviceType	Specifies the DAC type
chan	DWORD	Specifies the DAC channel
clockSource	DaqDacClockSource	Set the clock to the specified source

Parameter Values

handle: obtained from the dagOpen function

deviceType: see table below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below

clockSource: see table below

Parameter Type Definitions

deviceType-(DaqDacDevi	.ceType)
Definition	chan Value	Description
DddtLocal	0	Start the transfer of waveform/pattern output data where DAC0 is one of the channels being output.
	1	Start the transfer of waveform/pattern output data where DAC1 is one of the channels being output.
	2	Start the transfer of waveform/pattern output data where DAC2 is one of the channels being output.
	3	Start the transfer of waveform/pattern output data where DAC3 is one of the channels being output.
DddtLocalDigital	0	Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is one of the channels being output.

clockSource-(DaqDacClockSource)

Note: For daq9513 specific commands [used only for DaqBoard and DaqBooks of the 100 and 200 Series] refer to Appendix D.

Definition	Description
DdcsDacClock	Specifies using the internal waveform/pattern output pacer clock on the device (see daqDacWaveSetFreq).
DdcsGatedDacClock	Specifies using the internal waveform/pattern output clock which is then gated through an external input (TTL input). Refer to pinout in user's manual for connection location.
DdcsAdcClock	Specifies that the waveform/pattern output clock follow that of current acquisition clock setting (see daqAdcSetClockSource).
DdcsExternalTTL	Specifies an external timebase supplied via External Dac Pacer Clock Input. Refer to pinout in user's manual for connection location.
DdcsRisingEdge	Clock Control Flag DdcsRisingEdge = 0x0
DdcsFallingEdge	Clock Control Flag DdcsFallingEdge = 0x100
DdcsOutputDisable	Output Control Flag Disables the Dac internal clock output (see note 1).
DdcsOutputEnable	Output Control Flag Enables the Dac internal clock output (see note 1).

Note 1: This note applies to the Daq Devices listed in the first block of the above table.

To enable the pacer output you must include the clock source with a parameter that enables the output clock; in other words, you have to write your **daqDacWaveSetClockSource** command as follows:

<u>C/C++ Style</u>:

Visual Basic Style:

The **DdcsOutputEnable** parameter is defined in the header file in the Daqx.bas module (VB):

'DaqBoard/2000 Output Control Flags

Global Const DdcsOutputDisable = 0 Disables the Dac internal clock output. Global Const DdcsOutputEnable = &H1000 Enables the Dac internal clock output.

Returns

DerrNoError

No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to digital-to-analog converter (DAC) channels and/or digital input/output (DIO) channels that are synchronously updated by a clock source defined by the application.

The daqDacWaveSetClockSource function's clockSource parameter specifies the clock source to use for updating all DAC/DIO channels which have been configured for waveform/pattern output. Regardless of the clock source selected, all channels configured for waveform/pattern output (see daqDacSetOutputMode will be synchronously updated upon each update clock pulse.

If using DaqBoard(ISA): If the more than one DAC channel waveform/pattern output is active, the update frequency for each channel is this rate divided by the total number of active DAC waveform output channels.

Prototypes

C/C++

daqDacWaveSetClockSource(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, DaqDacClockSource clockSource);

Visual BASIC

VBdaqDacWaveSetClockSource&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal clockSource&)

Program References

DAQDACEX02.CPP, DAQDACEX03.CPP

Also See: daqDacWaveSetBuffer, daqDacSetOutputMode, daqDacTransferGetStat

Format

```
daqDacWaveSetDiskFile(handle, deviceType, chan, filename, numUpdateCycles,
offsetBytes, offsetUpdateCycles, dataFormat)
```

Purpose

daqDacWaveSetDiskFile configures a waveform/pattern output for streaming from a file.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which
deviceType	DaqDacDeviceType	Specifies the DAC type
chan	DWORD	Specifies the DAC channel
fileName	LPSTR	String representing the path and
		filename of the disk file to be output
numUpdateCycles	DWORD	Number of update cycles to read from
		file
offsetBytes	DWORD	Offset for header in bytes
offsetUpdateCycles	DWORD	Number of update cycles to skip at the
		start of the file
dataFormat	DaqDacWaveFileDataFormat	Format of data file

Parameter Values

hnadle: obtained from the daqOpen function

deviceType: see table below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below

fileName: pointer to a valid string containing the path and file name of the output data file

numUpdateCycles: the number of usable updates cycles in the file can range from 0 to 4,294,967,295; however, disk memory limitations may apply. If set to 0, will read all cylces from the file

offsetBytes: the number of bytes to skip at the beginning of the file range from 0 to 4,294,967,295; however, disk memory limitations may apply

offsetUpdateCycles: the number of update cycles to skip at the beginning of the file range from 0 to 4,294,967,295, however, disk memory limitations may apply

dataFormat: see table below

Parameter Type Definitions

Definition	Chan Value	Description
DddtLocal	0	Start the transfer of waveform/pattern output data where DAC0 is one of the channels being output.
	1	Start the transfer of waveform/pattern output data where DAC1 is one of the channels being output.
	2	Start the transfer of waveform/pattern output data where DAC2 is one of the channels being output.
	3	Start the transfer of waveform/pattern output data where DAC3 is one of the channels being output.
DddtLocalDigital	0	Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is one of the channels being output.

dataFormat-(Da	qDacWaveFileDa	taFormat)		
dataFormat Value	Data Format	DAC Output	P3 Digital Output	Sample Data Termination
DdwdfBinaryCounts	16-bit word	Raw D/A Counts	Word is 16-bit	None fixed 2
	(low/high byte)	(low/high byte)	Pattern	bytes
DdwdfBinaryCountsHL	16-bit word	Raw D/A Counts	Word is 16-bit	None – fixed 2
	(high/low byte)	(high/low byte)	Pattern	bytes
DdwdfBinaryFloat	Single Precision Float	Float D/A Volts	Integer portion is	None – fixed 4
	(4 bytes)	(-10.0 to +10.0)	16-bit Pattern	bytes
DdwdfBinaryDouble	Double Precision Float	Double D/A volts	Integer portion is	None – fixed 8
	(8-bytes)	(-10.0 to +10.0)	16-bit Pattern	bytes
DdwdfAsciiCountsDec	Decimal ASCII chars (0-65535)	ASCII Decimal D/A Counts	Decimal value is 16-bit Pattern	Any non-Dec ASCII chars
DdwdfAsciiCountsHex	Hex ASCII chars	ASCII Hex	Hex value is 16-bit	Any non-Hex
	(0-FFFF)	D/A Counts	Pattern	ASCII chars
DdwdfAsciiCountsBin	Binary ASCII chars (0 – 1111111111111111)	ASCII Binary D/A Counts	Decimal value is 16-bit Pattern	Any non-Bin ASCII chars
DdwdfAsciiCountsOct	Octal ASCII chars	ASCII Octal	Decimal value is	Any non-Octal
	(0 – 177777)	D/A Counts	16-bit Pattern	ASCII chars
DdwdfAsciiFloat	Floating Point ASCII chars (-10.0 – 65535.0)	ASCII Float Voltage (-10.0 - +10.0)	Float value (integer portion) is 16-bit Pattern	Any non-Floating Point ASCII chars

Returns

DerrNoError

No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to digital-to-analog converter (DAC) channels and/or digital input/output (DIO) channels that are synchronously updated by a clock source defined by the application.

The daqDacWaveSetDiskFile function has two prerequisites: first, the appropriate channels have been configured for waveform/pattern output using dynamic output mode (see the daqDacSetOutputMode function) and second, the daqDacWaveSetBuffer function must be set to DdtmDriverBuffer. Generally, the waveform/pattern should be configured in the same manner as a standard transfer from a PC memory-based buffer, with the exception that no transfer buffer needs to be allocated. The driver will automatically transfer all data from the specified file to the internal output FIFO on the device while the output transfer is active.

File Location

The filename parameter specifies the location of the waveform/pattern output file. This is a string variable that contains the path and file name to open. The path may be any valid local or network path name. However, it should be noted, that a path to a network file may have intrinsic file I/O delays associated with it that would hinder the output process under high throughput configurations. Care should be exercised when specifying a file that is not local to the PC controlling the waveform/pattern output operation.

File Organization

The following sections describe the layout and format of the source file for the waveform/pattern output operation from file. This function supports a number of different data formats for the source file, as well as providing mechanisms to output any contiguous block of update output data within the file.

File Layout

The offsetBytes and the offsetUpdateCycles parameters allow the start of the update data to be offset from the beginning of the file. The offsetBytes parameter indicates that a certain number of bytes appear at the beginning of the file that should be ignored. These bytes may be file header information or other data but are not valid output samples. If there is no file header information or non-output data, then offsetBytes should be set to 0. The offsetUpdateCycles parameter indicates that a certain amount of output update cycle data should be ignored. The value of this parameter specifies the number of output cycles that should be ignored at the beginning of the file. If the offsetBytes is non-zero, then these output update cycles may follow the header or other information in the file. An output cycle consists of an update data block which consists of all channel data necessary for one update clock output for all configured channels. The numUpdateCycles parameter indicates the number of output trom the file after the offset data. This value does not indicate the number of total output cycles to perform during the output from file operation, it simply indicates the number of cycles in the file that should be output for each iteration of the file.

The following table shows how the entire file is organized. The arrows indicate the iterations of the valid output cycle data within the file when the file is being output to the device.

• In the following table, the shaded areas indicate the portion of the file that is to be ignored for the waveform/pattern output from file operation.


- If the **numUpdateCycles** value is set to 0, then all the data *after* the offset data and before the end of the file will be used during the output operation.
- The following table represents a file that has sample data for DAC0, DAC1, DAC2, DAC3 and P3 Digital Output channels. A file with data for a different channel configuration will change accordingly. The number of cycles to ignore will be based upon the waveform/pattern output channels that are currently configured(see daqDacSetOutputMode function).

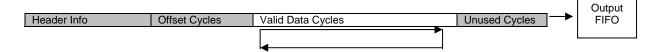
Treader Tho	mation (offsetByt	es in bytes,)		
Cycle 0	DACO	DAC1	DAC2	DAC3	P3D0
-,	Data	Data	Data	Data	Data
Cycle 1	DACO	DAC1	DAC2	DAC3	P3D
	Data	Data	Data	Data	Data
Cycle 2	DACO	DAC1	DAC2	DAC3	P3D
	Data	Data	Data	Data	Data
Cycle 3	DACO	DAC1	DAC2	DAC3	P3D
	Data	Data	Data	Data	Data
Cycle	DACO	DAC1	DAC2	DAC3	P3D
	Data	Data	Data	Data	Data
Cycle (offsetUpdateCycles-1)	DACO	DAC1	DAC2	DAC3	P3D
	Data	Data	Data	Data	Data
Cycle (offsetUpdateCycles)	DACO	DAC1	DAC2	DAC3	P3D
	Data	Data	Data	Data	Data
Cycle (offsetUpdateCycles+1)	DACO	DAC1	DAC2	DAC3	P3D0
	Data	Data	Data	Data	Data
Cycle	DACO	DAC1	DAC2	DAC3	P3D
	Data	Data	Data	Data	Data
Cycle	DACO	DAC1	DAC2	DAC3	P3D
	Data	Data	Data	Data	Data
Cycle	DACO	DAC1	DAC2	DAC3	P3D
	Data	Data	Data	Data	Data
Cycle	DACO	DAC1	DAC2	DAC3	P3D(
	Data	Data	Data	Data	Data
Cycle (offsetUpdateCycles +	DACO	DAC1	DAC2	DAC3	P3D
NumUpdateCycles - 1)	Data	Data	Data	Data	Data
Cycle (offsetUpdateCycles +	DACO	DAC1	DAC2	DAC3	P3D
NumUpdateCycles)	Data	Data	Data	Data	Data
Cycle (offsetUpdateCycles +	DACO	DAC1	DAC2	DAC3	P3D0
NumUpdateCycles + 1)	Data	Data	Data	Data	Data
Cycle	DACO	DAC1	D.AC2	DAC3	P3D0
	Data	Data	Data	Data	Data
Cycle (EOF cycle)	DACO	DAC1	DAC2	DAC3	P3D0
	Data	Data	Data	Data	Data

The driver will automatically calculate the number of complete output update cycles in the file using the offset information, the number of channels currently configured for waveform/pattern output, the size of the data samples and the total file size.

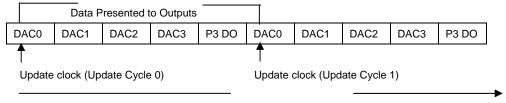
Update Cycle Data Blocks

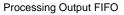
The waveform/pattern output file is organized into sequences of update data blocks. Each update data block represent the sample data necessary to update all output channels configured for waveform/pattern output for one output cycle. Each output cycle is initiated by an update clock pulse (see daqDacWaveSetFreq and daqDacWaveSetClockSource). The sample data is ordered according to the output channel for which it will be output. Each update data block is ordered as follows:

If any of the above channels is not configured for waveform/pattern output then it will simply not be included in the update data block, however, the channel ordering will not change. If for example a waveform/pattern output is configured for DAC0, DAC2 and P3 DO will have the following update data block:


|--|

Update/Sample Data Format


The dataFormat parameter allows the selection of the format of the output sample data that applies to the file. The file must have the its sample data formatted in one of the following valid formats in order to be used for a waveform/pattern output from file operation. The while the layout of the output file is fixed, the format of the output sample data can vary greatly. Several output sample data formats are available in both binary and ASCII data formats.


Output From File Operation

Once the waveform/pattern output has been configured and the output from file has been setup using this function, the waveform/pattern output operation can be armed using the daqDacWaveArm function. When the waveform/pattern output operation is armed, the driver will transfer as much output data as possible to the internal output FIFO on the device. Once the waveform/pattern output operation is triggered, the driver will then refill the internal output FIFO as room becomes available from the specified output data file. The cycle data transferred from the output data file to the internal output FIFO is read from the valid output cycle data area defined by the file layout table in the "File Layout" section (unshaded update cylces)

While the waveform/pattern output operation is active, the driver will continue to fill the internal output FIFO with output cycle data until the waveform/pattern output termination condition is satisfied. The waveform/pattern output termination is configured by setting the appropriate update mode using the daqDacWaveSetMode function. Once cycle data is transferred to the internal output FIFO on the device, the device is responsible for maintaining the output FIFO and updating the output channels every update clock pulse. When the output update clock "fires", the next available update data block is loaded from the internal waveform/pattern output FIFO on the device to the port, which then presents the values to the DAC or digital port for output.

The status of a waveform/pattern output operation can be monitored using the daqDacTransferGetStat function. When in waveform/pattern output-from-file mode, the retCount parameter *indicates the number of iterations of the file and not the total number of update cycles*.

The amount of data transferred of the will automatically calculate the number of complete output update cycles in the file using the offset information, the number of channels currently configured for waveform/pattern output, the size of the data samples and the total file size.

Prototypes

C/C++

daqDacWaveSetDiskFile(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, LPSTR filename, DWORD numUpdateCycles, DWORD OffsetBytes, DWORD OffsetUpdateCycles, DaqDacWaveFileDataFormat dataFormat);

Visual BASIC

VBdaqDacWaveSetDiskFile&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal filename\$, ByVal numUpdateCycles&, ByVal OffsetBytes&, ByVal OffsetUpdateCycles&, ByVal dataFormat&)

Program References

None

daqDacWaveSetFreq

Also See: dagDacWaveGetFreq, dagDacWaveSetClockSource

Format

```
daqDacWaveSetFreq(handle, deviceType, chan, freq)
```

Purpose

daqDacWaveSetFreq sets the waveform/pattern output update frequency (in Hz) for the specified device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the waveform output update
		frequency will be set
deviceType	DaqDacDeviceType	Specifies the DAC type
chan	DWORD	Specifies the DAC channel
freq	FLOAT	Sets the DAC waveform output frequency to the specified
		frequency

Parameter Values

handle: obtained from the dagOpen function

- deviceType: see table below
- chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below
- freq: single precision floating point value (4 bytes) that contains the update frequency from 0.0 to 500000.0 Hz

Parameter Type Definitions

DeviceType-(DaqDacDevi	.ceType)
Definition	chan Value	Description
DddtLocal	0	Start the transfer of waveform/pattern output data where DAC0 is one of the channels being output.
	1	Start the transfer of waveform/pattern output data where DAC1 is one of the channels being output.
	2	Start the transfer of waveform/pattern output data where DAC2 is one of the channels being output.
	3	Start the transfer of waveform/pattern output data where DAC3 is one of the channels being output.
DddtLocalDigital	0	Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is one of the channels being output.

Returns

DerrNoError

No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to DAC and/or digital output channels that are synchronously updated by a clock source defined by the application.

The frequency is set via the freq parameter and is dependent upon the clock source chosen for the selected device. The clock source can be configured via the daqDacWaveSetClockSource function. The waveform/pattern output update frequency is the rate at which samples are sent from the internal output FIFO to a single output channel.

Setting the Output Update Frequency

The output update frequency is set via the freq parameter. This parameter sets the internal waveform/pattern output pacer clock (in Hz) and represents the frequency at which all channels configured for waveform/pattern output will be updated. Each time the configured waveform/pattern output pacer clock fires, a sample for each channel will be loaded from the internal FIFO into the appropriate DAC or digital output device and output.

The frequency programmed using the freq function may not be obtainable. The reason for this is that either the frequency specified is outside of the operating update frequency of the output pacer clock, or, due to the resolution of the pacer clock, the frequency is not attainable. If the latter is the case, then the output pacer clock will be programmed to the nearest attainable frequency. If the frequency is outside of the operating range of the pacer clock, then an error will be generated. See the daqDacWaveGetFreq function for more information on setting the output pacer clock frequency.

The specifications section of the device user's manual provides the acceptable frequency values for the device.

Prototypes

C/C++

daqDacWaveSetFreq(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD
chan, FLOAT freq);

Visual BASIC

VBdaqDacWaveSetFreq&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal freq!)

Program References

DAQDACEX02.CPP, DAQDACEX03.CPP

daqDacWaveSetMode

Also See: daqDacWaveSetTrig, daqDacWaveSetFreq

Format

daqDacWaveSetMode(handle, deviceType, chan, mode, updateCount)

Purpose

daqDacWaveSetMode sets the waveform/pattern update mode for the output operation.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the DAC waveform
		output mode will be set
deviceType	DaqDacDeviceType	Specifies the DAC type
chan	DWORD	Specifies the DAC channel
mode	DaqDacWaveformMode	Specifies the desired DAC waveform output mode
updateCount	DWORD	Sets the total sample update count

Parameter Values

handle: obtained from the daqOpen function

deviceType: see table below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below

mode: see table below

updateCount: the total number update samples per channel to output can range from 1 to 4,294,967,295; however, memory limitations may apply

Parameter Type Definitions

DeviceType-(D	aqDacDevic	eType)
Definition	chan Value	Description
DddtLocal	0	Start the transfer of waveform/pattern output data where DAC0 is one of the channels being output.
	1	Start the transfer of waveform/pattern output data where DAC1 is one of the channels being output.
	2	Start the transfer of waveform/pattern output data where DAC2 is one of the channels being output.
	3	Start the transfer of waveform/pattern output data where DAC3 is one of the channels being output.
DddtLocalDigital	0	Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is one of the channels being output.

mode-(DaqDacWa	aveformMode)
Definition	Description
DdwmNShot	Write the specified number of DAC points, then disarm
DdwmNFileIterations	Write the specified number of file iterations, then stop (file mode only)?
DdwmInfinite	Cycle through the buffer until the daqDacWaveDisarm function is executed

Returns

DerrNoError No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to DAC and/or digital output channels that are synchronously updated by a clock source defined by the application.

The daqDacWaveSetMode function controls how the waveform/pattern is going to proceed and how the waveform/pattern output will terminate.

Setting the Update Mode

The mode parameter defines the state in which the waveform/pattern is to proceed and under what conditions it should terminate. Here, there are two basic modes that can be set with the mode parameter. The first, set by the value DdwmNShot, will continue the waveform/pattern output until a specified update count has been satisfied. The second, set by the value DdwmInfinite, will continue the waveform/pattern output indefinitely until explicitly terminated by the application. The deviceType and chan parameters must correspond with a channel that has been configured for waveform/pattern output using the daqDacSetOutputMode function. The mode values are defined as follows:

DdwmNShot – Continues generating waveform/pattern output until updateCount number of samples have been output to each channel. Upon completion of the specified amount of updates, the waveform/pattern output will automatically terminate and disarm the waveform/pattern output for all channels. For more information on configuring channels for waveform/pattern output operation, see daqDacSetOutputMode. Since each output update clock initiates an output on each channel concurrently, the updateCount parameter indicates the number of sample updates that are to occur on each channel before the waveform/pattern output operation is terminated.

DdwmInfinite – Continues generating waveform/pattern output indefinitely. The waveform/pattern output will continue indefinitely until the application issues a daqDacWaveDisarm function or a fatal error condition occurs during the waveform/pattern output operation. In this mode the updateCount parameter is ignored.

DdwmNFileIterations – Continues generating waveform/pattern output until the the specified number of file interations are written, then stops. This setting only works in file mode. Note that, while in this mode, the updateCount parameter of the daqWaveSetMode function will return values in terms of file iterations instead of updates (an update consists of all data required to update all channels during a single output clock pulse).

With either mode, the waveform/pattern output will not actually begin until the waveform/pattern output operation has been properly armed (daqDacWaveArm) and triggered (daqDacWaveSetTrig)

Prototypes

C/C++

daqDacWaveSetMode(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, DaqDacWaveformMode mode, DWORD updateCount);

Visual BASIC

VBdaqDacWaveSetMode&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal mode&, ByVal updateCount&)

Program References

DAQDACEX02.CPP, DAQDACEX03.CPP

daqDacWaveSetPredefWave

Format

Also See: daqDacWaveSetUserWave

```
daqDacWaveSetPredefWave(handle, deviceType, chan, waveType, amplitude,
offset, dutyCycle, phaseShift)
```

Purpose

daqDacWaveSetPredefWave specifies a pre-defined waveform for DAC waveform output on the specified device channel.

daqDacWaveSetMode is used to set the update rate and cycling mode for this waveform.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to setup a pre-defined waveform output
deviceType	DaqDacDeviceType	Specifies the DAC type
chan	DWORD	Specifies the DAC channel
waveType	DaqDacWaveType	Specifies the predefined waveform output type
amplitude	DWORD	Sets the peak-to-peak amplitude for which to generate the pre-
		defined waveform
offset	DWORD	Sets the offset for the pre-defined waveform
dutyCycle	DWORD	Sets the duty cycle as a percentage of the predefined waveform
phaseShift	DWORD	Set the phase shift (in degrees) of the predefined waveform
		relative to other DAC channel

Parameter Values

handle: obtained from the dagOpen function

deviceType: see table below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below

waveType: see table below

amplitude: valid values range from 0 to 65,535 (in D/A counts)

offset: valid values range from 0 to 65,535 (representing the voltage level in D/A counts)

dutyCycle: duty cycle is a percentage of the predefined waveform and can range from 1 to 100

<code>phaseShift:</code> phase shift is degrees to shift the predefined waveform from 0 to 360

Parameter Type Definitions

deviceType-(DaqDacDeviceType)		
Definition chan Value Description		Description
DddtLocal	0	Start the transfer of waveform/pattern output data where DAC0 is one of the channels being output.
	1	Start the transfer of waveform/pattern output data where DAC1 is one of the channels being output.
	2	Start the transfer of waveform/pattern output data where DAC2 is one of the channels being output.
	3	Start the transfer of waveform/pattern output data where DAC3 is one of the channels being output.

WaveType-(DaqDacWaveType)		
Definition	Description	
DdwtSine	Output a sine wave	
DdwtSquare	Output a square wave	
DdwtTriangle	Output a triangle wave	

Returns

The DAC channel number doesn't exist
Parameters were out-of-range
Predefined waveform is not supported
Not enough memory was available to build the waveform
Hardware is not capable of this function
No error

For more details on error messages refer to the Daq Error Table.

Function Usage

The daqDacWaveSetPredefWave function creates the defined waveform on the specified channel buffer as soon as the acquisition is armed—however, this function should only be used in static output mode.

DaqBoard (ISA-Type), DaqBook/2000 Series, DaqBoard/2000 Series, and cPCI DaqBoard/2000c Series

When using the daqDacWaveSetPredefWave function with the DaqBoard(ISA) devices, it is important to note that they use 12-bit DAC's. However, for consistancy, all functions use 16-bit values. The driver will convert 16-bit parameters to appropriate 12-bit values for the DaqBoard (ISA), while the 16-bit value is passed directly to 1000 Series and 2000 Series devices.

Thus, an amplitude or offset value of 0 corresponds to the **minimum output** of the DAC, as follows:

- -10V for DaqBoard/2000 Series
- 0V for DaqBoard (ISA-type)

A value of 65,535 corresponds to the maximum output of the DAC, as follows:

- 10V for DaqBoard/2000 Series
- 5V for DaqBoard (ISA-type)

The specifications section of the device user's manual provides the resolution values for the device; for example: the voltage for a DaqBoard/2000 Series devices has a resolution of approximately 0.305 mV (20 V / 65,535).

Prototypes

C/C++

daqDacWaveSetPredefWave(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, DaqDacWaveType waveType, DWORD amplitude, DWORD offset, DWORD dutyCycle, DWORD phaseShift);

Visual BASIC

VBdaqDacWaveSetPredefWave&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal waveType&, ByVal amplitude&, ByVal offset&, ByVal dutyCycle&, ByVal phaseShift&)

Program References

DAQDACEX02.CPP, DAQDACEX03.CPP

daqDacWaveSetTrig

Format

Also See: daqDacWaveSetMode

daqDacWaveSetTrig(handle, deviceType, chan, triggerSource, rising)

Purpose

daqDacWaveSetTrig sets the trigger event for the waveform/pattern output operation.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle of the device for which to set DAC
		waveform triggering
deviceType	DaqDacDeviceType	Specifies the DAC type
chan	DWORD	Specifies the DAC channel
triggerSource	DaqDacTriggerSource	Specifies the DAC output trigger source
rising	BOOL	Boolean indicating the trigger source edge

Parameter Values

handle: obtained from the daqOpen function

deviceType: see table below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below

triggerSource: see table below

rising: this parameter is ignored with the current trigger source definitions available with this command

Parameter Type Definitions

deviceType-(DaqDacDeviceType)		
Definition	chan Value	Description
DddtLocal	0	Set the trigger source of waveform/pattern output operation where DAC0 is one of the channels being output.
	1	Get the trigger source of waveform/pattern output operation where DAC1 is one of the channels being output.
	2	Set the transfer of waveform/pattern output data where DAC2 is one of the channels being output.
	3	Set the transfer of waveform/pattern output data where DAC3 is one of the channels being output.
DddtLocalDigital	0	Set the transfer waveform/pattern output data where the 16-bit P3 Digital port is one of the channels being output.

triggerSource-(DaqDacTriggerSource)		
Definition Description		
DdtsImmediate	Output immediately after arming	
DdtsSoftware	Output upon calling the daqDacWaveSoftTrigfunction from user or software	
DdtsAdcClock	Output on a signal from the ADC clock.	

Returns

DerrNoError No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to DAC and/or digital output channels that are synchronously updated by a clock source defined by the application.

The daqDacWaveSetTrig function is used to setup the trigger event to initiate a waveform/pattern output for all channels which have been configured for waveform/pattern output mode. For more information on configuring channels for waveform/pattern output, see the daqDacSetOutputMode function.

Setting the Waveform/pattern Output Trigger Event

The triggerSource parameter specifies the source of the event that will trigger the waveform/pattern output operation. Currently, there are only two valid trigger events that can be set with the triggerSource parameter. The first, set with the value DdtsImmediate, indicates that the waveform/pattern output operation should trigger immediately upon being armed. The second, set with the value DdtsImmediate, indicates that the waveform/pattern output operation should be triggered upon the application issuing a command to do so. The deviceType and chan parameters must correspond with a channel that has been configured for waveform/pattern output using the daqDacSetOutputMode function. The trigger event values are defined as follows:

DdtsImmediate – Trigger the waveform/pattern output operation immediately upon execution of the daqDacWaveArm function. This trigger source is used to trigger the waveform/pattern output immediately upon successfully arming the operation. Since, however, many of the configuration error conditions and conflicts are detected during the arm operation, it is important to handle error conditions properly when using this trigger source.

DdtsSoftware - Trigger the waveform/pattern output operation upon execution of the daqDacWaveSoftTrig function. This trigger source requires that the daqDacWaveArm function be issued before the daqDacWaveSoftTrig function. Once armed, the application may trigger the waveform/pattern output operation at any time by issuing daqDacWaveSoftTrig function.

DdtsAdcClock – Trigger on the ADC clock, useful when trying to synchronize the waveform/pattern output with the ADC clock. This trigger source is valid only for Daq 2000 Series devices.

The rising flag is currently ignored and is reserved for future use.

Prototypes

C/C++

daqDacWaveSetTrig(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, DaqDacTriggerSource triggerSource, BOOL rising);

Visual BASIC

VBdaqDacWaveSetTrig&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal triggerSource&, ByVal rising&)

Program References

DAQDACEX02.CPP, DAQDACEX03.CPP

Also See: daqDacWaveSetPredefWave

Format

daqDacWaveSetUserWave(handle, deviceType, chan)

Purpose

daqDacWaveSetUserWave configures a user-defined buffer for DAC waveform output.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to which the user-defined waveform
		will be output
deviceType	DaqDacDeviceType	Specifies the DAC device type
chan	DWORD	Specifies the DAC device channel

Parameter Values

handle: obtained from the dagOpen function

- deviceType: see table below
- chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below

Parameter Type Definitions

deviceType-(DaqDacDeviceType)			
Definition	Definition chan Value Description		
DddtLocal	0	Configure a user defined waveform for waveform/pattern output operation, where DAC0 is one of the channels being output.	
	1	Configure a user defined waveform for waveform/pattern output operation, where DAC1 is one of the channels being output.	
	2	Configure a user defined waveform for waveform/pattern output operation, where DAC2 is one of the channels being output.	
	3	Configure a user defined waveform for waveform/pattern output operation, where DAC3 is one of the channels being output.	
DddtLocalDigital	NA	The 16-bit P3 Digital port is not applicable.	

Returns

DerrInvDacChan T	The DAC channel number doesn't exist
DerrInvBuf A	A waveform buffer was not specified
DerrMemAlloc N	Not enough memory was available to build the waveform
DerrNotCapable H	Iardware is not capable of this function
DerrNoError N	No error

For more details on error messages refer to the Daq Error Table.

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to DAC and/or digital output channels that are synchronously updated by a clock source defined by the application.

Any arbitrary waveform can be built in an array. daqDacWaveSetUserWave can then be called by specifying pointers to the beginning of the waveform, the size of the array, and the target DAC channel to send the waveform.

The data value should be 16-bit WORD which will be converted to the corresponding voltage by the D/A converter. Reference the device user's manual in regard to D/A range and resolution.

For example; the voltage for a DaqBoard/2000 Series board has a resolution of approximately 0.305 mV (20 V / 65,535).

Prototypes

C/C++

daqDacWaveSetUserWave(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan);

Visual BASIC

VBdaqDacWaveSetUserWave&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Program References

DAQDACEX03.CPP

Format

daqDacWaveSoftTrig(handle, deviceType, chan)

Purpose

daqDacWaveSoftTrig activates a software trigger for the waveform/pattern output operation on the specified device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which to trigger the DAC waveform
		output
deviceType	DaqDacDeviceType	Specifies the DAC device type
chan	DWORD	Specifies the DAC device channel

Parameter Values

 $\verb+handle: obtained from the daqOpen function$

- deviceType: see table below
- chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table below

Parameter Type Definitions

DAC Device Type Definitions – DaqDacDeviceType			
Definition	chan Value	Description	
DddtLocal	0	Software trigger the waveform/pattern output operation where DAC0 is one of the channels being output.	
	1	Software trigger the waveform/pattern output operation where DAC1 is one of the channels being output.	
	2	Software trigger the waveform/pattern output data where DAC2 is one of the channels being output.	
	3	Software trigger the waveform/pattern output data where DAC3 is one of the channels being output.	
DddtLocalDigital	0	Software trigger the waveform/pattern output data where the 16-bit P3 Digital port is one of the channels being output.	

Returns

DerrNoError

No error

Function Usage

The term *waveform/pattern output* is used extensively throughout the entries for the functions of the form daqDac.... This refers to an analog waveform output modes and/or digital pattern output modes. These terms describe output to DAC and/or digital output channels that are synchronously updated by a clock source defined by the application.

The trigger event must first have been configured for software triggering with the daqDacWaveSetTrig function prior to calling this function, and the trigger source must have been set to DdtsSoftware. Once issued, the waveform/pattern output operation will begin; the updating of all channels configured for waveform/pattern output will also begin. The deviceType and chan parameters must correspond with a channel that has been configured for waveform/pattern output using the daqDacSetOutputMode function.

Prototypes

C/C++

daqDacWaveSoftTrig(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD
chan);

Visual BASIC

VBdaqDacWaveSoftTrig&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Program References

DAQDACEX03.CPP

Also See: daqDacWtMany

Format

daqDacWt(handle, deviceType, chan, dataVal)

Purpose

daqDacWt sets the output value of a local or expansion DAC channel.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device whose channel value will be updated
deviceType	DaqDacDeviceType	Specifies the DAC type
chan	DWORD	D/A channel to output to the selected D/A channel
dataVal	WORD	Value to output to the selected D/A channel

Parameter Values

handle: obtained from the dagOpen function

deviceType: see the table in the "Selecting the Output Channel" section below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType table in the "Selecting the Output Channel" section below

dataVal: valid values range from 0 to 65,535

Returns

DerrInvChan	Invalid channel
DerrInvDacVal	Invalid data value
DerrNoError	No error

For more details on error messages refer to the Daq Error Table.

Function Usage

The channel specified by the daqDacWt function must be an appropriate DAC channel type, and the channel must have been configured as a direct output channel prior to calling this function. See daqDacSetOutputMode for setting the output mode to be direct (using the DdomVoltage value).

Setting the DAC Value

The value of the DAC channel is written using the dataVal parameter. This parameter is an integer value ranging from 0 to 65,535. This is a 16-bit value, and it spans the range over which the output can vary, depending upon the specified range of the port for the device.

Some devices use 16-bit D/A converters, in which case each bit in the 16-bit integer corresponds to one bit programmed to the D/A converter. However, some devices have 12-bit D/A converters. In this case, the low order nibble (4-bits) of the programmed dataVal value will be ignored when the D/A is programmed.

The specifications section of the device user's manual provides the ranges and the associated resolution values for the device.

Selecting the Output Channel

The chan and the deviceType parameters determine which output channel's voltage will be set. The device type is represented by predefined settings described below. The channel is simply an integer (starting at 0) which represents the channel location relative to the first channel of the same type. The table below describes this relationship:

deviceType-(DaqDacDeviceType)		
Device Type	chan Value	Description
DddtLocal	0	Output data value to DAC0
	1	Output data value to DAC1
	2	Output data value to DAC2
	3	Output data value to DAC3
DddtDbk	N*4 + 0	Set output for channel0 on a DBK2 or DBK5 on bank N
	N*4 + 0	Set output for channel1 on a DBK2 or DBK5 on bank N
	N*4 + 0	Set output for channel2 on a DBK2 or DBK5 on bank N
	N*4 + 0	Set output for channel3 on a DBK2 or DBK5 on bank N
DddtLocalDigital	N/A	The 16-bit P3 Digital port is not applicable for analog output operations

If using an analog hardware trigger with DaqBook, TempBook or DaqBoard(ISA) products, the DAC channel 1 (deviceType = DddtLocal and chan = 1) is not available to be programmed. The reason for this is that the DAC channel 1 is used to configure the trigger level for the acquisition.

Prototypes

C/C++

daqDacWt(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, WORD
dataVal);

Visual BASIC

VBdaqDacWt&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal dataVal%)

Program References

DAQEX.FRM (VB)

daqDacWtMany

Also See: dagDacWt

Format

daqDacWtMany(handle, deviceTypes, chans, dataVals, count)

Purpose

daqDacWtMany sets the output values of multiple local or expansion DAC channels.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device whose channel values will be updated
deviceTypes	DaqDacDeviceType	Pointer to an array which specifies the DAC types
chans	PDWORD	Pointer to any array which specifies the DAC channels
dataVals	PWORD	Pointer to an array which gives a value to output to the
		D/A channel
count	DWORD	Length of all the arrays

Parameter Values

handle: obtained from the dagOpen function

deviceTypes: see table below

chans: pointer to an array of output channel numbers; for channel number values, refer to the deviceTypes table below

dataVals: valid values range from 0 to 65,535

count: the total number of analog channels to output range from 1 to 512

Parameter Type Definitions

deviceType-(DaqDacDeviceType)		
Definition	chan Value	Description
DddtLocal	0	Output data value to DAC0
	1	Output data value to DAC1
	2	Output data value to DAC2
	3	Output data value to DAC3
DddtDbk	N*4 + 0	Set output for channel0 on a DBK2 or DBK5 on bank N
	N*4 + 0	Set output for channel1 on a DBK2 or DBK5 on bank N
	N*4 + 0	Set output for channel2 on a DBK2 or DBK5 on bank N
	N*4 + 0	Set output for channel3 on a DBK2 or DBK5 on bank N
DddtLocalDigital	NA	The 16-bit P3 Digital port is not applicable for analog output operations

Returns

DerrInvDacVal No error DerrNoError

Invalid data value

For more details on error messages refer to the Daq Error Table.

Function Usage

The channels specified by the daqDacWtMany function must be the appropriate DAC channel types, and the channels must have been configured as direct output channels prior to calling this function. See daqDacSetOutputMode for setting the output mode to be direct (DdomVoltage).

The daqDacWtMany function operates in a similar manner to the single output version of the function, daqDacWt. Here, the deviceTypes and chans parameters are arrays of DAC channel types and channel numbers. The dataVals parameter is an array of output values corresponding to the deviceTypes and chans arrays. The total number of channels to update (which should be equivalent to the number of entries in each array) is set by the count parameter. Since this function is a multichannel version of the daqDacWt function, please refer to the daqDacWt function for a complete description of the parameters and other settings.

Prototypes

C/C++

daqDacWtMany(DaqHandleT handle, DaqDacDeviceType *deviceTypes, PDWORD chans, PWORD dataVals, DWORD count);

Visual BASIC

VBdaqDacWtMany&(ByVal handle&, deviceTypes&, chans&, dataVals&, ByVal count&)

Program References

DAQDACEX01.CPP, DBK02Ex.cpp, DBK05Ex.Cpp DAQEX.FRM (VB)

Also See: daqGetLastError, daqProcessError, daqSetDefaultErrorHandler

Format

daqDefaultErrorHandler(handle, errCode)

Purpose

daqDefaultErrorHandler displays an error message and then exits the application program.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to which will be attached to the default error handler
errCode	DaqError	Error code number of the detected error

Parameter Values

handle: obtianed form the daqOpen function errCode: valid return values can be found in the Daq Error Table

Returns

None

Function Usage

When the device library is loaded, it invokes the default error handler whenever it encounters an error. The error handler may be changed with dagSetErrorHandler.

For more details on error messages refer to the Daq Error Table.

Prototypes

C/C++

daqDefaultErrorHandler(DaqHandleT handle, DaqError errCode);

Visual BASIC

VBdaqDefaultErrorHandler(ByVal handle&, ByVal errCode&)

Program References

DAQADCEX05.CPP, DAQADCEX06.CPP

daqDeleteDevice

Format

daqDeleteDevice(AliasName)

Purpose

daqDeleteDevice deletes the specified device from the Windows Registry

Parameter Summary

Parameter	Туре	Description
AliasName	LPSTR	Pointer to a character string containing the alias name of the device to delete

Parameter Values

AliasName: Pointer to a character string containing the alias name of the device to delete

Returns

DerrNoError if successful or a DaqError error code (see the DaqError table at the end of chapter 4).

Function Usage

This function deletes the specified device from the Windows Registry. Devices created using the daqCreateDevice function or the DaqX control panel applet can be deleted with this function.

Prototypes

C/C++

daqDeleteDevice(LPSTR AliasName);

Visual BASIC

VBdaqDeleteDevice&(ByVal AliasName\$)

Program References

daqFormatError

Also See: daqSetDefaultErrorHandler, daqSetErrorHandler, daqProcessError, daqGetLastError, daqDefaultErrorHandler

Format

daqFormatError (errorNum, msg)

Purpose

dagFormatError returns the text-string equivalent for the specified error condition code.

Parameter Summary

Parameter	Туре	Description
errorNum	DaqError	Error condition whose text will be returned
msg	PCHAR	Pointer to a character string which will store the returned error text

Parameter Values

errorNum: see the Daq Error Table

msg: pointer to a character string which will hold error text; see the Daq Error Table for more details

Returns

DerrNoError No error

Function Usage

The error condition is specified by the errorNum parameter. The error text will be returned in the character string pointed to by the msg parameter. The character string space must have been previously allocated by the application before calling this function. The allocated character string should be, at minimum, 64 bytes in length.

For more details on error messages refer to the Daq Error Table.

Prototypes

C/C++

daqFormatError(DaqError errorNum, PCHAR msg)

Visual BASIC

VBdaqFormatError&(ByVal errorNum&, ByRef msg As Byte)

Program References

daqGetChannelType

Format

daqGetChannelType(handle, chan, option, pChSubType)

Purpose

daqGetChannelType gets the channel type and sub type of the specified channel of the current device

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the channel type and sub type is to be
		obtained
chan	DWORD	Specifies which channel
option	BOOL	Selects an option card or main unit if applicable
pChSubType	DaqChannelSubType *	Pointer to a value that will contain the channel sub type

Parameter Values

handle: obtained from the daqOpen function

channel: from 0 to the maximum number of channels available on the system

option: 0 for the main unit or non-zero for an option card

pChSubType: Pointer to a value that will contain the channel sub type or NULL if the channel sub type is not desired (see DaqAdcExpSubType of the daqGetHardwareInfo function)

Returns

The channel type of the specified channel of the current device (see DaqAdcExpType of the daqGetHardwareInfo function)

Function Usage

This function gets the channel type and sub type of the current device.

Prototypes

C/C++

daqGetChannelType(DaqHandleT handle, DWORD chan, BOOL option, DaqAdcExpSubType *pChSubType);

Visual BASIC

VBdaqGetChannelType&(ByVal handle&, ByVal chan&, ByVal bOption&, ChSubType&)

Program References

daqGetDeviceCount

Format

Also See: daqGetDeviceList, daqOpen

daqGetDeviceCount (deviceCount)

Purpose

daqGetDeviceCount returns the number of currently configured devices.

Parameter Summary

Parameter	Туре	Description
deviceCount	DWORD	Pointer to which the device count is to be returned

Parameter Values

deviceCount: a pointer to a single value ranging from 1 to 4

Returns

DerrNoError No error

Function Usage

The daqGetDeviceCount function will return the number of devices currently configured in the system. The devices do not need to be opened for this function to properly detect the number of devices configured. If the number returned does not seem appropriate, the device configuration list should be checked via the **Daq* Configuration** applet located in the Control Panel. Refer to the configuration section in your device's user manual for more details (also see daqOpen for the **Daq* Configuration** applet example).

Prototypes

C/C++

daqGetDeviceCount(DWORD deviceCount);

Visual BASIC

VBdaqGetDeviceCount&(devCount As Long)

Program References

DAQADCEX01.CPP

daqGetDeviceInfo

Format

daqGetDeviceInfo(handle, pDevInfo)

Purpose

daqGetDeviceInfo gets the device information for the currently opened device

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the device information is to be obtained
pDevInfo	DaqDevInfoPT	Pointer to the device information structure to return the device information

Parameter Values

handle: obtained from the daqOpen function pDevInfo: see the DaqDevInfoT table of the daqCreateDevice function

Returns

DerrNoError if successful or a DaqError error code (see the DaqError table at the end of chapter 4)

Function Usage

This function will get the device information of the device actually connected. This information may be slightly different than the information contained in the Windows Registry. For example, if a WaveBook/516A was created using the DaqX control panel applet, but a WaveBook/512A is actually connected, the device information structure returned by this function will reflect the WaveBook/512A.

Prototypes

C/C++

daqGetDeviceInfo(DaqHandleT handle, DaqDevInfoPT pDevInfo);

Visual BASIC

VBdaqGetDeviceInfo&(ByVal handle&, DevInfo As DaqDevInfoT)

Program References

Format

daqGetDeviceInventory(pInfoList, pInfoListCount, pMatchInfo, flags)

Purpose

daqGetDeviceInventory builds a device information list of devices that exist in the Windows Registry and/or devices that can be dynamically detected

Parameter Summary

Parameter	Туре	Description
pInfoList	DaqDevInfoPT	Pointer an array of device information structures
pInfoListCount	PDWORD	Pointer to the number of elements in the device information list
pMatchInfo	DaqDevInfoPT	Pointer to a device information structure containing device matching information
flags	DWORD	One or more device information flags

Parameter Values

pInfoList: a pointer to an array of DaqDevInfoT structures (see the DaqDevInfoT table of the daqCreateDevice function)

- **pInfoListCount**: upon entry, the value that pInfoListCount points to should be set to the number of elements in the information list array; upon exit, the value that pInfoListCount points to will be set to the number of elements in the information list that were modified
- **pMatchInfo**: if any of the match info flags are set in the flags parameter, pMatchInfo should point to a device information structure containing the appropriate match information, otherwise pMatchInfo can be NULL flags: see the DaqDevInfoFlagsT table below

Parameter Type Definitions

flags – (DaqDevInfoFlagsT)		
Definition	Description	
DaqInfoFlagsCreated	Enables searching the Windows registry for created devices and returns those that	
	are found	
DaqInfoFlagsNotCreated	Enables searching the Windows registry for created devices but removes those that	
	are found	
DaqInfoFlagsDetected	Enables searching for detectable devices and returns those that are detected	
DaqInfoFlagsNotDetected	Enables searching for detectable devices but removed those that are detected	
DaqInfoFlagsTestPassed	Enables testing of detected and/or created devices and returns those that pass the communications test	
DaqInfoFlagsTestFailed	Enables testing of detected and/or created devices and returns those that pass the communications test	
DaqInfoFlagsNew	Returns devices that are detected, but not yet created (DaqInfoFlagsDetected +	
	DaqInfoFlagsNotCreated)	
DaqInfoFlagsRemoved	Returns devices that are created, but failed the communications test	
	(DaqInfoFlagsCreated + DaqInfoFlagsTestFailed)	
DaqInfoFlagsAvailable	Returns devices that are created, and passed the communications test	
	(DaqInfoFlagsCreated + DaqInfoFlagsTestPassed)	
DaqInfoFlagsMatchAlias	Causes any devices whose alias does not match the specified alias to be removed	
	from the list	
DaqInfoFlagsMatchParentAlias	Causes any devices whose parent alias does not match the specified alias to be	
	removed from the list	
DaqInfoFlagsMatchType	Causes any devices whose device type does not match the specified device type to be	
	removed from the list	
DaqInfoFlagsMatchSubType	Causes any devices whose device type and device sub type do not match the	
	specified device type and device sub type to be removed from the list	
DaqInfoFlagsMatchProdGroup	Causes any devices whose device product group does not match the product group of	
	the specified device type to be removed from the list	
DaqInfoFlagsMatchProdFamily	Causes any devices whose device product family does not match the product family	
	of the specified device type to be removed from the list	

Returns

DerrNoError if successful or a DaqError error code (see the DaqError table at the end of chapter 4)

Function Usage

This function will return the subset of created and detected devices specified by the flags parameter. At least one of the DaqInfoFlagsCreated, DaqInfoFlagsNotCreated, DaqInfoFlagsDetected or DaqInfoFlagsNotDetected flags must be specified and no more than one of the DaqInfoFlagsMatch flags can be specified (see preceding table).

The AliasName element of the pMatchInfo structure must be set if the DaqInfoFlagsMatchAlias or DaqInfoFlagsMatchParentAlias flag is set.

The DeviceType element of the pMatchInfo structure must be set if the DaqInfoFlagsMatchType, DaqInfoFlagsMatchProdGroup or DaqInfoFlagsMatchProdFamily flag is set.

The DeviceSubType element of the pMatchInfo structure must be set if the DaqInfoFlagsMatchSubType flag is set.

Prototypes

C/C++

daqGetDeviceInventory(DaqDevInfoPT pInfoList, PDWORD pInfoListCount, DaqDevInfoPT pMatchInfo, DWORD flags);

Visual BASIC

VBdaqGetDeviceInventory&(InfoList() As DaqDevInfoT, InfoListCount As Long, ByVal Flags As Long, MatchInfo As DaqDevInfoT)

Program References

daqGetDeviceList

Format

Also See: daqGetDeviceCount, daqOpen

daqGetDeviceList (deviceList, deviceCount)

Purpose

daqGetDeviceList returns a list of currently configured device names.

Parameter Summary

Parameter	Туре	Description
deviceList	DaqDeviceListT	Pointer to memory location to which the device list is to be returned
deviceCount	DWORD	Number of devices returned in the device list

Parameter Values

deviceList: pointer to an array of returned device names, each name containing up to 64 characters deviceCount: valid values range from 1 to 4

Returns

DerrNoError No error

Function Usage

The daqGetDeviceList function will return the device names in the deviceList parameter for the number of devices returned by the deviceCount parameter. The deviceList entry contains an array of device names each consisting of up to 64 characters. Each device name can then be used with the daqOpen function to open the specific device. The DaqDeviceListT parameter must point to an appropriately sized memory area which can hold all the names for all the configured devices before calling this function. If it is not known how many devices are configured, then call the daqGetDeviceCount function before calling this function.

If the number returned does not seem appropriate, the device configuration list should be checked via the **Daq* Configuration** applet located in the Control Panel. Refer to the configuration section in your device's user manual for more details.

Prototypes

C/C++

daqGetDeviceList(DaqDeviceListT *deviceList, DWORD *deviceCount);

Visual BASIC

VBdaqGetDeviceList&(devList As DaqDeviceListT, devCount As Long)

Program References

DAQADCEX01.CPP

daqGetDeviceProperties

Format

daqGetDeviceProperties(daqName, deviceProps)

Purpose

dagGetDeviceProperties returns the properties for a specified device.

Parameter Summary

Parameter	Туре	Description
daqName	LPSTR	Pointer to a character string representing the name of the
		device for which to retrieve properties
deviceProps	DaqDevicePropsT	Pointer to the memory area for which to return the properties
		of the device specified by daqName

Parameter Values

daqName: a pointer to a string of characters—no effective range of values applies deviceProps: see table below

Parameter Type Definitions

deviceProps-(DaqDevicePropsT)			
Definition	Description	Format	
deviceType	Main Chassis Device Type Definition	DWORD	
basePortAddress	Port Address (ISA Address, LPT Port, etc)	DWORD	
dmaChannel	DMA Channel (if applicable)	DWORD	
protocol	Interface Protocol	DWORD	
alias	Device Alias Name	STRING	
maxAdChannels	Maximum A/D channels (with full expansion)	DWORD	
maxDaChannels	Maximum D/A channels (with full expansion)	DWORD	
maxDigInputBits	Maximum Dig. Inputs (with full expansion)	DWORD	
maxDigOutputBits	Maximum Dig. Outputs (with full expansion)	DWORD	
maxCtrChannels	Maximum Counter/Timers (with full expansion)	DWORD	
mainUnitAdChannels	Maximum Main Unit A/D channels (no expansion)	DWORD	
mainUnitDaChannels	Maximum Main Unit D/A channels (no expansion)	DWORD	
mainUnitDigInputBits	Maximum Main Unit Digital Inputs (no expansion)	DWORD	
mainUnitDigOutputBits	Maximum Main Unit Digital Outputs (no expansion)	DWORD	
mainUnitCtrChannels	Maximum Main Unit Counter/Timer channels (no exp.)	DWORD	
adFifoSize	A/D on-board FIFO Size	DWORD	
daFifoSize	D/A on-board FIFO Size	DWORD	
adResolution	Maximum A/D Converter Resolution	DWORD	
daResolution	Maximum D/A Converter Resolution	DWORD	
adMinFreq	Minimum A/D Conversion Scan Frequency (Hz)	FLOAT	
adMaxFreq	Maximum A/D Conversion Scan Frequency (Hz)	FLOAT	
daMinFreq	Minimum D/A Output Update Frequency (Hz)	FLOAT	
daMaxFreq	Maximum D/A Output Update Frequency (Hz)	FLOAT	

If this function fails, make sure the daqName parameter references a valid device that is currently configured. This can be checked via the Daq* Configuration applet located in the Control Panel. Refer to the configuration section in your device's user manual for more details.

Returns

DerrNoError

No Error

Function Usage

Passing the name of the device in the daqName parameter specifies the device. This name should be a valid name of a configured device. The properties for the device are returned in the deviceProps parameter. The deviceProps parameter is a pointer to an application-allocated memory area which will hold the device-properties structure. This memory must have been allocated before calling this function. Upon return, the memory area pointed to by the deviceProps parameter will contain the properties for the device.

Prototypes

C/C++

daqGetDeviceProperties(LPSTR daqName, DaqDevicePropsT *deviceProps);

Visual BASIC

VBdaqGetDeviceProperties(daqName\$, deviceProps as DaqDevicePropsT)

Program References

DAQADCEX01.CPP

daqGetDriverVersion

Format

daqGetDriverVersion (version)

Purpose

dagGetDriverVersion retrieves the revision level of the driver currently in use.

Parameter Summary

Parameter	Туре	Description
version	PDWORD	Pointer to the version number of the current device driver

Parameter Values

version: a pointer to a value from 100 to 10,000

Returns

DerrNoError No error

Prototypes

C/C++

daqGetDriverVersion(PDWORD version);

Visual BASIC

VBdaqGetDriverVersion&(version&)

Program References

Format

daqGetHardwareInfo(handle, whichInfo, info)

Purpose

daqGetHardwareInfo retrieves hardware information for the specified device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device
whichInfo	DaqInfo	Specifies what type of device information to retrieve
info	VOID	Pointer to the information returned from the selected device; data returned
		varies according to info type selected

Parameter Values

handle: obtained from the daqOpen function
whichInfo: see table below
info: pointer to a returned value; value ranges depend on information requested

Parameter Type Definitions

whichInfo-(DaqHardwareInfo)		
Definition	Description	
DhiHardwareVersion	Returns value of type DaqHardwareVersion (see table below)	
DhiProtocol	Returns value of type DaqProtocol (see table below)	
DhiADmin	ADC Output Low Range	
DhiADmax	ADC Output High Range	
DhiHardwareSubType	Returns value of type DaqHardwareSubType (see next page)	

The following tables give the possible return values when DaqHarwareInfo is set to DhiHardwareVersion or DhiProtocol. DaqSubType information follows the table below.

DhiHardwareVersion		
Value Returned Device		
0	DaqBook100	
1	DaqBook112	
2	DaqBook120	
3	DaqBook200 or DaqBook/260	
4	DaqBook216	
5	DaqBoard100	
б	DaqBoard112	
7	DaqBoard200	
8	DaqBoard216	
9	Daq112	
10	Daq216	
11	WaveBook512	
12	WaveBook516	
13	TempBook66	
14	PersonalDaq56	
15	WaveBook516_250	
16	WaveBook512_10V	
17	DaqBoard2000, DaqBoard/2000c	
18	DaqBoard2001, DaqBoard/2001c	
19	DaqBoard2002, DaqBoard/2002c	
20	DaqBoard2003, DaqBoard/2003c	
21	DaqBoard2004, DaqBoard/2004c	
22	DaqBoard2005, DaqBoard/2005c	

Value Returned	Device
23	DaqBook2000 Series Device (A, E, or X)
24, 25, 26, 27, 28	Reserved
29	WaveBook/512A
30	WaveBook/516A, WaveBook/516E
31	WBK25
32	WBK40
33	WBK41
34	DaqBoard/1000
35	DaqBoard/1005
36	DaqLab/2000 Series
37	DaqScan/2000 Series
38	DaqBoard/500
39	DaqBoard/505
40	DaqBoard/3000
41	DaqBoard/3001
42	DaqBoard/3005
43	UsbDaqDevice
44	PersonalDaq3000
45	ZonicPod
46	DaqBoard/3006
47	DaqBoard/3000USB

Hardware Sub Type Definitions

typedef enum {

 $/\!/$ a hardware sub type of DaqSubTypeDefault indicates that the hardware device type $/\!/$ is defined by the hardware version

DaqSubTypeDefault = 0,

// sub types for the DaqBook2000 main type

DaqSubTypeDaqBook2000A = 0, // DaqBook/2000A or DaqBook/2000X DaqSubTypeDaqBook2000E = 1, // DaqBook/2000E DaqSubTypeDaqBook2001 = 2, // DaqBook/2001 DaqSubTypeDaqBook2020 = 3, // DaqBook/2020 DaqSubTypeDaqBook2005 = 4, // DaqBook/2005

// sub types for the DaqLab2000 main type

DaqSubTypeDaqLab2001 = 0, // DaqLab/2001 DaqSubTypeDaqLab2005 = 1, // DaqLab/2005

// sub types for the DaqScan2000 main type

DaqSubTypeDaqScan2001 = 0, // DaqScan/2001 DaqSubTypeDaqScan2002 = 1, // DaqScan/2002 DaqSubTypeDaqScan2004 = 2, // DaqScan/2004 DaqSubTypeDaqScan2005 = 3, // DaqScan/2005

// sub types for the WaveBook516A main type

DaqSubTypeWaveBook516A = 0, // WaveBook/516A DaqSubTypeWaveBook516E = 1, // WaveBook/516E DaqSubTypeZonicBook618 = 2, // ZonicBook/618

// sub types for the DaqBoard2000 main type

DaqSubTypeDaqBoard2000 = 0, // DaqBoard/2000 DaqSubTypeDaqTemp7A = 1, // DaqTemp/7A

// sub types for the DaqBoard2001 main type

DaqSubTypeDaqBoard2001 = 0, // DaqBoard/2001 DaqSubTypeDaqTemp14A = 1, // DaqTemp/14A

// sub types for the DaqBoard2005 main type

DaqSubTypeDaqBoard2005 = 0, // DaqBoard/2005 DaqSubTypeDaqTemp7 = 1, // DaqTemp/7 DaqSubTypeDaqTemp14 = 2, // DaqTemp/14

// sub types for the UsbDaqDevice main type

DaqSubTypeUnknownUsbDaqDevice	= 0,
DaqSubTypeDevelUsbDaqDevice	= 1,
DaqSubTypeBlankUsbDaqDevice	= 2,

// sub types for the PersonalDaq3000 main type

DaqSubTypePersonalDaq3001 = 0, DaqSubTypePersonalDaq3005 = 1,

// sub types for the ZonicPod main type

DaqSubTypeZonicPod4 = 0,

DaqSubTypeZonicPod8 = 1,

// sub types for the DaqBoard3000USB main type

DaqSubTypeDaqBoard3000USB = 0, DaqSubTypeDaqBoard3001USB = 1,

DaqSubTypeDaqBoard3005USB = 2,

} DaqHardwareSubType;

DhiProtocol		
Definition	Description	
DaqProtocolNone	Communications not established	
DaqProtocol4	Standard LPT Port 4-bit mode	
DaqProtocol8	Standard LPT Port 8-bit mode	
DaqProtocolSMC666	SMC 37C666 EPP mode	
DaqProtocolFastEPP	WBK20/21 Fast EPP mode	
DaqProtocolECP	Enhanced Capability Port	
DaqProtocol8BitEPP	8-bit EPP mode	
DaqProtocolISA	ISA bus card DaqBoard 100/200	
DaqProtocolPcCard	PCCard for Daq (PCMCIA)	
DaqProtocolUSB	USB protocol (PersonalDaq)	
DaqProtocolPCI	PCI bus card, DaqBoard/2000 Series	
DaqProtocolCPCI	Compact PCI (cPCI) bus card, cPCI DaqBoard/2000c Series	
DaqProtocolTCPIP	Ethernet	

Returns

DerrNoError No error

Function Usage

This function has been obsoleted by the dagGetInfo function, and his presented here only as a reference. See dagGetInfo for more details.

The daqGetHardwareInfo function retrieves hardware information for the device specified by the handle parameter. The device must have been opened previously to calling daqGetHardwareInfo by the daqOpen function.

Prototypes

C/C++

daqGetHardwareInfo(DaqHandleT handle, DaqInfo whichInfo, VOID *info);

Visual BASIC

VBdaqGetHardwareInfo&(ByVal handle&, ByVal whichInfo&, info As Any)

Program References

daqGetHardwareType

Format

daqGetHardwareType(handle, pHwSubType)

Purpose

daqGetHardwareType gets the device type and sub type of the current device

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the device type and sub type is to be
		obtained
pHwSubType	DaqHardwareSubType *	Pointer to a value that will contain the device sub type

Parameter Values

handle: obtained from the daqOpen function

pHwSubType: Pointer to a value that will contain the device sub type or NULL if the device sub type is not desired (see DaqHardwareSubType of the daqGetHardwareInfo function)

Returns

The device type of the current device (see DaqHardwareVersion of the daqGetHardwareInfo function)

Function Usage

This function gets the device type and sub type of the current device.

Prototypes

C/C++

daqGetHardwareType(DaqHandleT handle, DaqHardwareSubType *pHwSubType);

Visual BASIC

VBdaqGetHardwareType&(ByVal handle&, HwSubType&)

Program References

daqGetInfo

Also See: daqGetDriverVersion, daqOpen, daqGetHardwareInfo

Format

daqGetInfo(handle, chan, whichInfo, info)

Purpose

daqGetInfo retrieves specific information for the specified device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device
chan	DWORD	Specifies which channel.
whichInfo	DaqInfo	Specifies what type of device information to retrieve
info	VOID	Pointer to the information returned from the selected device; data returned varies according to info type selected

Parameter Values

handle: obtained from the daqOpen function chan: valid values range from 0 to 511 whichInfo: see table below info: pointer to a returned value; value ranges depend on information requested

Parameter Type Definitions

Definition	Description
DdiHardwareVersionInfo	Returns value of type DagHardwareVersion (see table: DdiHardwareVersionInfo)
DdiProtocolInfo	Returns value of type DaqProtocol (see table: DdiProtocolInfo)
DdiChTypeInfo	Returns channel type (DagAdcExpType)
DdiChOptionTypeInfo	Returns channel option type (DaqAdcExpType)
DdiADminInfo	ADC Output Low Range
DdiADmaxInfo	ADC Output High Range
DdiChanCountInfo	Not Used
DdiNVRAMDateInfo	Date String
DdiNVRAMTimeInfo	Time String
DdiDbk4MaxFreqInfo	Returns the current DBK4 LPF setting
DdiDbk4SetBaselineInfo	Returns the current DBK4 baseline setting
DdiDbk4ExcitationInfo	Returns the current DBK4 excitation source setting
DdiDbk4ClockInfo	Returns the current DBK4 clock setting
DdiDbk4GainInfo	internally used by daqAdcSetScan
DdiDbk7SlopeInfo	Returns the current DBK7 slope
DdiDbk7DebounceTimeInfo	Returns the current DBK7 debounce setting
DdiDbk7MinFreqInfo	Returns the current DBK7 min frequency setting
DdiDbk7MaxFreqInfo	Returns the current DBK7 max frequency setting
DdiDbk50GainInfo	internally used by dagAdcSetScan
DdiPreTrigFreqInfo	Returns the pre-trigger sample rate (Hz)
DdiPostTrigFreqInfo	Returns the post-trigger sample rate (Hz)
DdiPreTrigPeriodInfo	Returns the pre-trigger sample period (sec)
DdiPostTrigPeriodInfo	Returns the pre-trigger sample period (sec)
DdiOptNVRAMDateInfo	WaveBook parameter
DdiOptNVRAMTimeInfo	WaveBook parameter
DdiExtFeatures	Returns data flag(s) of type DaqHardwareExtFeatures (see table: DdiExtFeatures)
DdipDaqCalibrationTime	Personal Daq initial calibration period
DdiFifoSize	FIFO capacity in WORD's of data
DdiFifoCount	Count of WORD's of data currently in the FIFO

(continued)

Definition	Description
DdiSerialNumber	Serial Number String
DdiAdcClockSource	Current Clock Source
DdiFirmwareVersion	Firmware Version (String)
DdiHardwareVersion	Hardware Version (String)
DdiDriverVersion	Driver Version (String)
DdiAdcTriggerScan	Trigger Scan Number (DWORD)
DdiAdcPreTriggerCount	Amount of Pre-Trigger Scans (DWORD)
DdiAdcPostTriggerCount	Amount of Post-Trigger Scans (DWORD)
DdiSetpointStatusReg	Returns 16-bit value indicating setpoint status
DdiWbk180penSensorStatus	Returns opens sensor status for specified WBK18 channel
DdiWbk180penSensorStatus	Returns opens sensor status for specified WBK18 channel
DdiWbk18PosOverRangeStatus	Returns positive over-range status for specified WBK18 channel
DdiWbk18NegOverRangeStatus	Returns negative over-range status for specified WBK18 channel
DdiWbk18LowPassMode	Returns current Low Pass mode enumeration value
DdiWbk18LowPassCutOff	Returns current Low Pass cutoff frequency
DdiWbk18HighPassCutOff	Returns current High Pass mode enumeration value
DdiWbk18CurrentSrc	Returns current ICP current state
DdiWbk18OverRangeEnable	Returns current state of over range enable in the form a an 8 bit mask
DdiWbk18esMode	Returns current mode
DdiWbk18esFreq	Returns current frequency setting – register read
DdiWbk18esAmplitude	Returns an enumeration representing the current amplitude setting -register read
DdiWbk18esFreqCycleTime	Returns current cycle time in microseconds
DdiWbk18esFreqDurationTime	Returns current duration in microseconds
DdiWbk180verRangeLimit	Returns current over range limit setting as a percentage.
DdiWbk18esRelay	Returns current relay position setting – register read
DdiWbk180penSensorStatusAll	Returns an 8 bit value indicating status for all 8 WBK18 channels
DdiWbk18PosOverRangeStatusAll	Returns an 8 bit value indicating status for all 8 WBK18 channels
DdiWbk18NegOverRangeStatusAll	Returns an 8 bit value indicating status for all 8 WBK18 channels
	Returns one byte of status:
	0 = TEDs Transducer Found ,Operation complete
DdiWbk18TEDsStatus	1 = TEDS Operation Busy
	2 = Operation complete, NO TEDs Found 4 = Channel is shorted
	Returns 34 byte array of TEDs info as follows:
	info[0] = Status
DdiWbk18TEDsData	info[1] = Amount of TEDS data available
	info[2] = First byte of TEDS data if available
	info[3.33] = Rest of TEDS data
DdiWbk18TEDsDataCount	Returns the Amount of TEDS data available
DdiChSubTypeInfo	Returns Channel sub type
DdiChOptionSubTypeInfo	Returns Option sub type
DdiSetpointStatusReg	Returns a 16 bit value indicating the status for all channels

The following table lists the possible return values when DaqGetInfo is set to DdiChTypeInfo, or is set to DdiChOptionTypeInfo.

Definition	Value	channel option type (DaqAdcExpType) Device	
20			
DaetNotDefined	0	Bank is unknown, or undefine the bank	
DaetDbk50	1	DBK50/51 option	
DaetDbk5	2	DBK5 option	
DaetDbk2	3	DBK2 option	
DaetDbk4	4	DBK4 option	
DaetDbk7	5	DBK7 option	
DoctWbk11	6	WBK11 SSH channel	
DoctWbk12	7	WBK12 filter card	
DoctWbk13	8	WBK13 filter & SSH card	
DmctWbk512	9	WaveBook/512 channel	
DmctWbk10	10	WBK10 channel	
DmctWbk14	11	WBK14 channel	
DmctWbk15	12	WBK15 channel	
DmctResponseDac	13	Response DAC on WaveBook	
DmctWbk16	14	WBK16 channnel	
DmctWbk516	15	WaveBook/516	
DmctpDaq	16	Personal Daq option	
DmctWbk516_250	17	250 kHz WaveBook/516	
DoctPga516	18	WaveBook/516 PGA board	
DmctWbk512_10V	19	WaveBook/512 10V	
DmctWbk10_10V	20	WBK10 10V	
DmctWbk16_SSH	21	WBK16 channel with SSH	
DmctWbk10A	22	WBK10A channel	
DoctWbk12A	23	WBK12A filter card	
DoctWbk13A	24	WBK13A filter & SSH card	
DmctWbk17	25	WBK17 channel	
DmctWbk512A	26	WaveBook/512A channel	
DmctWbk516A	27	WaveBook/516A channel	
DmctWbk18	28	WBK18 channel	
DaetDbk90	29	DBK90 channel	

The following tables give the possible return values when DaqGetInfo is set to DdiHardwareVersionInfo, DdiProtocolInfo, or DdiExtFeatures.

Value Returned	Device
0	DaqBook100
1	DaqBook112
2	DaqBook120
3	DaqBook200 or DaqBook/260
4	DaqBook216
5	DaqBoard100
б	DaqBoard112
7	DaqBoard200
8	DaqBoard216
9	Daq112
10	Daq216
11	WaveBook512
12	WaveBook516
13	TempBook66
14	PersonalDaq56
15	WaveBook516_250
16	WaveBook512_10V
17	DaqBoard2000, DaqBoard/2000c
18	DaqBoard2001, DaqBoard/2001c
19	DaqBoard2002, DaqBoard/2002c
20	DaqBoard2003, DaqBoard/2003c
21	DaqBoard2004, DaqBoard/2004c
22	DaqBoard2005, DaqBoard/2005c
23	DaqBook2000 Series Device (A, E, or X)

Value Returned	Device
24	Reserved
25	Reserved
26	Reserved
27	Reserved
28	Reserved
29	WaveBook/512A
30	WaveBook/516A, WaveBook/516E
31	WBK25
32	WBK40
33	WBK41
34	DaqBoard/1000
35	DaqBoard/1005
36	DaqLab/2000 Series
37	DaqScan/2000 Series
38	DaqBoard/500
39	DaqBoard/505
0x100	DaqTemp7
0x200	DaqTemp7A
0x400	DaqTemp14
0x800	DaqTemp14A

DdiProtocolInfo		
Value Returned	Protocol	
DaqProtocolNone	Communications not established	
DaqProtocol4	Standard LPT Port 4-bit mode	
DaqProtocol8	Standard LPT Port 8-bit mode	
DaqProtocolSMC666	SMC 37C666 EPP mode	
DaqProtocolFastEPP	WBK20/21 Fast EPP mode	
DaqProtocolECP	Enhanced Capability Port	
DaqProtocol8BitEPP	8-bit EPP mode	
DaqProtocolISA	ISA bus card DaqBoard 100/200	
DaqProtocolPcCard	PCCard for Daq (PCMCIA)	
DaqProtocolUSB	USB protocol (PersonalDaq)	
DaqProtocolPCI	PCI bus card DaqBoard/2000 Series	
DaqProtocolCPCI	Compact PCI (cPCI) bus card, cPCI DaqBoard/2000c Series	
DaqProtocolTCPIP	Ethernet	

DdiExtFeatures		
Value Returned	Extended Feature Info	
Wavebook Mega-FIFO features		
DhefFifoOverflowMode	FIFO has Overflow Protection mode	
DhefFifoCycleMode	FIFO has Cycle ("Finite") Mode	
DhefFifoDataCount	FIFO has readable current-WORD's-of-data count	
Wavebook516 features		
DhefTrigDigPattern	Can trigger on a digital pattern	
DhefTrigPulseInput	Can trigger on a pulse input	
DhefAcqClkExternal	Can pace acquisition to an external clock	

DdiChSubTypeInfo	
Value Returned	
DaqSubTypeDefault	Default Sub type
DaqSubTypeDaqBook2000A	DaqBook/2000A or DaqBook/2000X
DaqSubTypeDaqBook2000E	DaqBook/2000E
DaqSubTypeDaqBook2001	DaqBook/2001
DaqSubTypeDaqBook2020	DaqBook/2020
DaqSubTypeDaqBook2005	DaqBook/2005
DaqSubTypeDaqLab2001	DaqLab/2001
DaqSubTypeDaqLab2005	DaqLab/2005
DaqSubTypeDaqScan2001	DaqScan/2001
DaqSubTypeDaqScan2002	DaqScan/2002
DaqSubTypeDaqScan2004	DaqScan/2004
DaqSubTypeDaqScan2005	DaqScan/2005
DaqSubTypeWaveBook516A	WaveBook/516A
DaqSubTypeWaveBook516E	WaveBook/516E
DaqSubTypeZonicBook618	ZonicBook/618
DaqSubTypeDaqBoard2000	DaqBoard/2000
DaqSubTypeDaqTemp7A	DaqTemp/7A
DaqSubTypeDaqBoard2001	DaqBoard/2001
DaqSubTypeDaqTemp14A	DaqTemp/14A
DaqSubTypeDaqBoard2005	DaqBoard/2005
DaqSubTypeDaqTemp7	DaqTemp/7
DaqSubTypeDaqTemp14	DaqTemp/14
DaqSubTypeDaqBoard3000USB	DaqBoard/3000USB
DaqSubTypeDaqBoard3001USB	DaqBoard/3001USB
DaqSubTypeDaqBoard3005USB	DaqBoard/3005USB
DaqSubTypeDaqBoard3006USB	DaqBoard/3006USB
DaqSubTypePersonalDaq3000	PersonalDaq/3000
DaqSubTypePersonalDaq3001	PersonalDaq/3001
DaqSubTypePersonalDaq3005	PersonalDaq/3005
DaqSubTypePersonalDaq3006	PersonalDaq/3006

Returns

DerrNoError No error

Function Usage

The daqGetInfo function retrieves specific information for the device specified by the handle parameter. The device must have been opened previously to calling daqGetInfo by the daqOpen function. The values returned vary in data type. If it is not specified by the whichInfo table in the "Parameter Type Definitions" section above, the returned data type remains the same as the type it was originally set as.

When the whichInfo parameter is set to DdiHardwareVersionInfo, the result is the same as using the daqGetHardwareInfo function.

The dagGetInfo function should be used instead of dagGetHardwareInfo.

Prototypes

C/C++

daqGetInfo(DaqHandleT handle, DWORD chan, DaqInfo whichInfo, VOID *info);

Visual BASIC

VBdaqGetInfo&(ByVal handle&, ByVal chan&, ByVal whichInfo&, info As Any)

Program References

daqGetLastError

Also See: daqDefaultErrorHandler, daqProcessError, daqSetDefaultErrorHandler

Format

daqGetLastError (handle, errCode)

Purpose

daqGetLastError retrieves the last error condition code registered by the driver.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device
errCode	DaqError	Pointer to a value which holds the last returned error code

Parameter Values

handle: obtained from the daqOpen function errCode: pointer to a valid error code ranging from 0 to 1,000

Returns

DerrNoError No error

Function Usage

This function will return the last error registered by the driver against the device specified by the handle parameter. The last error registered against the device will be returned in the memory pointed to by the errorCode parameter.

For more details on error messages refer to the Daq Error Table.

Prototypes

C/C++

daqGetLastError(DaqHandleT handle, DaqError *errCode);

Visual BASIC

VBdaqGetLastError&(ByVal handle&, errCode&)

Program References

None

daqIOGet8255Conf

Also See: daqIORead, daqIOReadBit, daqIOWrite, daqIOWriteBit, daqSetOption

Format

daqIOGet8255Conf(handle, portA, portB, portCHigh, portCLow, config)

Purpose

daqIOGet8255Conf sets and retrieves the configuration for the specified 8255 device with the specified port configurations.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device
portA	BOOL	8255 port A value
portB	BOOL	8255 port B value
portCHigh	BOOL	8255 port C high nibble value
portCLow	BOOL	8255 port C low nibble value
config	PDWORD	Pointer to a value representing the 8255's current configuration

Parameter Values

handle: obtained from the daqOpen function
portA: valid values are either true (≠ 0) or false (= 0)
portB: valid values are either true (≠ 0) or false (= 0)
partCHigh: valid values are either true (≠ 0) or false (= 0)
portCLow: valid values are either true (≠ 0) or false (= 0)
config: a pointer to the configuration value ranging from 0 to 65,535

Returns

DaqError

See Daq Error Table

For more details on error messages refer to the Daq Error Table.

Function Usage

The configuration is returned in the config parameter and will indicate the current configuration of the 8255. This configuration must then be written to the control register of the desired 8255 with the daqIOWrite function. When set to true, the portA, portB, portCHigh and portCLow flags will configure the respective port as an input port. If the flag is set to false, the port will be configured as an output.

daqSetOption will work for single byte use.

Prototypes

C/C++

daqIOGet8255Conf(DaqHandleT handle, BOOL portA, BOOL portB, BOOL portCHigh, BOOL portCLow, PDWORD config);

Visual BASIC

VBdaqIOGet8255Conf&(ByVal handle&, ByVal portA&, ByVal portB&, ByVal portCHigh&, ByVal portCLow&, config&)

Program References

DAQDIGIOEX01.CPP, DBK20_21EX.CPP, DBK23_24EX.CPP, DAQEX.FRM (VB)

daqlORead

Also See: daqIOReadBit, daqIOWrite, daqIOWriteBit, daqSetOption

Format

daqIORead(handle, devType, devPort, whichDevice, whichExpPort, value)

Purpose

daqIORead reads the specified port on the selected device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to perform the IO read
devType	DaqIODeviceType	IO device type
devPort	DaqIODevicePort	IO device port selection
whichDevice	DWORD	IO device instance to read from
whichExpPort	DaqIOExpansionPort	IO device expansion port to read from
value	PDWORD	Pointer to returned IO read value

Parameter Values

handle: obtained from the daqOpen function devType: see table below devPort: see table below whichDevice: valid values range from 0 to 171 whichExpPort: see table below value: pointer to a value ranging from 0 to 65,535

Parameter Type Definitions

devType-(DaqIODeviceType)		
Definition	Description	
DiodtLocalBitIO	P2 – Local addressing by bit	
DiodtLocal8255	P2 – Local addressing on the device	
DiodtP2Local8	P2 – Local addressing by byte	
DiodtP3LocalDig16	P3 – Local addressing for HS 16-bit Dig I/O	
DiodtP3LocalCtr16	P3 – Local addressing of 16-bit counters	
DiodtP2Exp8	P2 – Expansion addressing by byte	
DiodtExp8255	DBK20, DBK21	
DiodtDbk23	DBK23	
DiodtDbk24	DBK24	
DiodtDbk25	DBK25	

devPort-(DaqIODevicePort)		
Definition	Description	
Local Bit I/O		
DiodpBitIO	P2 – Addressing by bit	
P2 Sequential 8-Bit Addressing		
DiodpP2Local8	P2 – Local addressing by byte	
DiodpP2LocalIR	P2 – Local Internal register (for configuring P2)	
DiodpP2Exp8	P2 – Expansion adressing by byte	
P3 Digital Port		
DiodpP3LocalDig16	P3 – Local addressing for HS 16-bit Dig I/O	
DiodpP3LocalDigIR	P3 – Local Internal register (for configuring P3)	
Local 8255, Dbk20, Dbk21 (Daq Devi	ce and DBK)	
Diodp8255A	P2 – Digital byte wide Port A	
Diodp8255B	P2 – Digital byte wide Port B	
Diodp8255C	P2 – Digital byte wide Port C	
Diodp8255IR	P2 –Internal register (for configuring P2)	
Diodp8255CHigh	P2 – Digital 4-bit wide Port C	
Diodp8255CLow	P2 – Digital 4-bit wide Port C	
DiodpP3LocalCtr16	P3 – 16-bit Counter	
Dbk23		
DiodpDbk23A	DBK23 – Digital byte wide Port A	
DiodpDbk23B	DBK23 – Digital byte wide Port B	
DiodpDbk23C	DBK23 – Digital byte wide Port C	
DiodpDbk23Unused	Not used	
Dbk24		
DiodpDbk24A	DBK24 – Digital byte wide Port A	
DiodpDbk24B	DBK24 – Digital byte wide Port B	
DiodpDbk24C	DBK24 – Digital byte wide Port C	
DiodpDbk24Unused	Not used	
DiodpDbk25	DBK25	-

whichExpPort-(DaqIOExpansionPort)		
Definition	Description	
DioepP1	Note that DioepP1 is for DigiBook only.	
DioepP2	DBK20/21 Port 2	
DioepP3	DBK20/21 Port 3	

Function Usage

The daqIORead function will return the current state of the port in the value parameter. Normally, if the selected port is a byte-wide port, the port state will occupy the low-order byte of the value parameter. Digital IO channels for the port corresponds to each bit within this low-order byte. If the bit is set, it indicates the channel is in a high state. If the bit is not set, the channel is indicated to be in a low state. This function requires that daqIOGet8255Conf or daqSetOption be called prior to invocation to configure the specifed port as an input port.

Local I/O

Those devices which support the P2 port have built-in Intel 8255C chips which can be used as general purpose I/O. The 8255C has 3 configurable DIO ports (PortA, PortB, PortC). These ports are 8-bit ports which can be individually programmed as either input or output ports. All three of the local P2 ports can be read asynchronously using the daqIORead function.

Additionally, there is a 16-bit Digital port on P3 of the main unit.* If devices allow this port to be used as a high speed digital port which can be scanned synchronously along with other analog channels in a acquisition.

Some devices, such as the DaqBook/2000 Series, DaqLab/2000 Series, DaqScan/2000 Series, DaqBoard/2000 Series [and 2000c Series] products, can also access this port asynchronously as a general purpose DIO port. If using the DaqBoard/2000 Series [or 2000c Series] products, the daqIORead function can be used to read this port asynchronously.

*Note: P3 for DaqBoard/2000 Series boards is obtained by connecting an appropriate DBK200 Series board to the DaqBoard/2000 Series board's P4 connector, via cable.

Expansion I/O

There are several expansion options (DBK2x) that allow the DIO to be expanded on the main unit of the device. These expansion units operate off of the P2 port of the main unit (if the main unit supports P2) and can be accessed asynchronously. These expansion cards vary in numbers of DIO as well as DIO connectivity and isolation characteristics (see the User Manual on characteristics of your particular DBK2x card). All of the DBK2x series expansion cards can be accessed asynchronously.

When using a DBK20 Series expansion card on P2, the Local P2 port becomes inaccessible.

The following table describes typical port settings. "n" is the expansion card's position in a system. In a three card system the first card would have n = 0, the second card n = 1, and the third card n = 2.

Digital I/O Port	devType	devPort	whichDevice	whichExpPort
P2 Local DIO (one 8255	- three 8-bit DIO banks)		· ·	
P2 Local 8255 Port A	DiodtP2Local8	DiodpP2Local8	Diodp8255A	DioepP2
(P2 pins 30-37)				
P2 Local 8255 Port B	DiodtP2Local8	DiodpP2Local8	Diodp8255B	DioepP2
(P2 pins 3-10)				
P2 Local 8255 Port C	DiodtP2Local8	DiodpP2Local8	Diodp8255C	DioepP2
(P2 pins 22-28)				
P3 Local DIO/HS Digita	I IO (one 16-bit DIO bank)			
P3 Local 16-bit Port*	DiodtP3LocalDig16	DiodpP3LocalDig16	DiodpP3LocalDig16	DioepP3
(P3 pins 3-10, 22-29)				
P2 Expansion DIO with	DBK20/21 (dual 8255's - six	8-bit DIO banks)	"n" is the expansion car	d's position in a system.
P2 Exp 8255-0 Port A	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255A	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-0 Port B	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255B	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-0 Port C	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255C	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-1 Port A	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255A + 4	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-1 Port B	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255B + 4	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-1 Port C	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255C + 4	DioepP2
(see DBK20/21 doc)			(see example)	
1	DBK23 (three 8-bit DIO bar	nks)	"n" is the expansion card	l's position in a system.
P2 Exp DBK23 Port A	DiodtDbk23	DiodpP2Exp8	(nx4) + DiodpDbk23A	DioepP2
P2 Exp DBK23 Port B	DiodtDbk23	DiodpP2Exp8	(nx4) + DiodpDbk23B	DioepP2
P2 Exp DBK23 Port C	DiodtDbk23	DiodpP2Exp8	(nx4) + DiodpDbk23C	DioepP2
P2 Expansion DIO with	DBK24 (three 8-bit DIO bai	nks)		
P2 Exp DBK24 Port A	DiodtDbk24	DiodpP2Exp8	(<i>n</i> x4) + DiodpDbk24A	DioepP2
P2 Exp DBK24 Port B	DiodtDbk24	DiodpP2Exp8	(nx4) + DiodpDbk24B	DioepP2
P2 Exp DBK24 Port C	DiodtDbk24	DiodpP2Exp8	(nx4) + DiodpDbk24C	DioepP2
P2 Expansion DIO with	DBK25 (one 8-bit DIO bank))	"n" is the expansion card	l's position in a system.
P2 Exp DBK25 Port	DiodtDbk25	DiodpP2Exp8	n + DiodpDbk25	DioepP2
WBK17				
WBK17 Digital Output	DiodtWbk17	DiodpWbk17_8Bit	First channel on unit (9, 17, 25.) DioeP1

Example of Calculating "whichDevice" for three DBK20 P2 Exp 8255-1 Port C banks.

For the first positioned card $n = 0$. Thus for the first card's P2 Exp 8255-1 Port C	<pre>whichDevice: (Note 1) (nx8) + Diodp8255B + 4 = n = 0</pre>	Result: Diodp8255B + 4
For the second positioned card n= 1 . Thus for the second card's P2 Exp 8255-1 Port C	(<i>n</i> x8) + Diodp8255B + 4 = n = 1	Diodp8255B + 12
For the third positioned card n = 2 . Thus for the third card's P2 Exp 8255-1 Port C	(nx8) + Diodp8255B + 4 = n=2	Diodp8255B + 20

Note 1: The equation is from the whichDevice column and "P2 Exp 8255-1" row (shaded), in the preceding table.

Returns

DerrNoError No error

Prototypes

C/C++

daqIORead(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, PDWORD value);

Visual BASIC

VBdaqIORead&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal whichDevice&, ByVal whichExpPort&, value&)

Program References

DAQDIGIOEX01.CPP, DAQDIGIOEX02.CPP, DBK20_21EX.CPP, DBK23_24EX.Cpp, DBK25EX.CPP, DAQEX.FRM (VB)

daqlOReadBit

Also See: daqIORead, daqIOWrite, daqIOWriteBit

Format

daqIOReadBit(handle, devType, devPort, whichDevice, whichExpPort, bitNum, bitValue)

Purpose

daqIOReadBit reads a specified bit on the selected device and port.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which to perform the IO
devType	DaqIODeviceType	IO device type
devPort	DaqIODevicePort	IO device port selection
whichDevice	DWORD	IO device selection
whichExpPort	DaqIOExpansionPort	IO expansion port address
bitNum	DWORD	IO port bit location to read
bitValue	PBOOL	IO port bit value (true - high, false - low)

Parameter Values

handle: obtained from the daqOpen function devType: see table below devPort: see table below whichDevice: valid values range from 0 to 171 whichExpPort: see table below bitNum: valid values range from 1 to 16 bitValue: valid values are either true (≠ 0) or false (= 0)

Parameter Type Definitions

devType-(DaqIODeviceType)		
Definition	Description	
DiodtLocalBitIO	P2 – Local addressing by bit	
DiodtLocal8255	P2 – Local addressing on device	
DiodtP2Local8	P2 – Local addressing by byte	
DiodtP3LocalDig16	P3 – Local addressing for HS 16-bit Dig I/O	
DiodtP3LocalCtr16	P3 – Local addressing of 16-bit counters	
DiodtP2Exp8	P2 – Expansion addressing by byte	
DiodtExp8255	DBK20, DBK21	
DiodtDbk23	DBK23	
DiodtDbk24	DBK24	
DiodtDbk25	DBK25	

devPort-(DaqIODevicePort) Definition Description		
2	Description	
Local Bit I/O		
DiodpBitIO	P2 – Addressing by bit	
P2 Sequential 8-Bit Addressing		
DiodpP2Local8	P2 – Local addressing by byte	
DiodpP2LocalIR	P2 – Local Internal register (for configuring P2)	
DiodpP2Exp8	P2 – Expansion adressing by byte	
P3 Digital Port		
DiodpP3LocalDig16	P3 – Local addressing for HS 16-bit Dig I/O	
DiodpP3LocalDigIR	P3 – Local Internal register (for configuring P3)	
Local 8255, Dbk20, Dbk21 (Daq devic	e and DBK)	
Diodp8255A	P2 – Digital byte wide Port A	
Diodp8255B	P2 – Digital byte wide Port B	
Diodp8255C	P2 – Digital byte wide Port C	
Diodp8255IR	P2 –Internal register (for configuring P2)	
Diodp8255CHigh	P2 – Digital 4-bit wide Port C	
Diodp8255CLow	P2 – Digital 4-bit wide Port C	
DiodpP3LocalCtr16	P3 – 16-bit Counter	
Dbk23	÷	
DiodpDbk23A	DBK23 – Digital byte wide Port A	
DiodpDbk23B	DBK23 – Digital byte wide Port B	
DiodpDbk23C	DBK23 – Digital byte wide Port C	
DiodpDbk23Unused	Not used	
Dbk24		
DiodpDbk24A	DBK24 – Digital byte wide Port A	
DiodpDbk24B	DBK24 – Digital byte wide Port B	
DiodpDbk24C	DBK24 – Digital byte wide Port C	
DiodpDbk24Unused	Not used	
DiodpDbk25	DBK25	

whichExpPort-(DaqIOExpansionPort)		
Definition	Description	
DioepP1	Note that DioepP1 is for DigiBook only.	
DioepP2	DBK20/21 Port 2	
DioepP3	DBK20/21 Port 3	

Returns

DagError See Dag Error Table

For more details on error messages refer to the Daq Error Table.

Function Usage

The daqIOReadBit function will return the current state of the selected bit in the bitValue parameter. The selected bit (specified by the bitNum parameter) corresponds to the input/output (I/O) channel on the port which is to be read. The bitValue will be true indicating a high state or false indicating a low state. This function requires that daqIOGet8255Conf or daqSetOption be called prior to invocation to configure the specifed port as an input port.

Local I/O

Those devices which support the P2 port have built-in Intel 8255C chips which can be used as general purpose I/O. The 8255C has 3 configurable digital input/output (DIO) ports (PortA, PortB, PortC). These ports are 8-bit ports which can be individually programmed as either input or output ports. All three of the local P2 ports can be read asynchronously using the daqIOReadBit function.

Additionally, there is a 16-bit Digital port on P3 of the main unit.* If devices allow this port to be used as a high speed digital port which can be scanned synchronously along with other analog channels in a acquisition.

Some devices, such as the DaqBook/2000 Series, DaqLab/2000 Series, DaqScan/2000 Series, DaqBoard/2000 Series [and 2000c Series] products, can also access this port asynchronously as a general purpose DIO port. If using the DaqBoard/2000 Series [or 2000c Series] products, the daqIORead function can be used to read this port asynchronously.

*Note: P3 for DaqBoard/2000 Series boards is obtained by connecting an appropriate DBK200 Series board to the DaqBoard/2000 Series board's P4 connector, via cable.

Expansion I/O

There are several expansion options (DBK2x) that allow the DIO to be expanded on the main unit of the device. These expansion units operate off of the P2 port of the main unit (if the main unit supports P2) and can be accessed asynchronously. These expansion cards vary in numbers of DIO as well as DIO connectivity and isolation characteristics (see the User Manual on characteristics of your particular DBK2x card). All of the DBK2x series expansion cards can be accessed asynchronously.

When using a DBK20 Series expansion card on P2, the Local P2 port becomes inaccessible.

The following table describes typical port settings. "n" is the expansion card's position in a system. In a three card system the first card would have n = 0, the second card n = 1, and the third card n = 2.

Digital I/O Port	devType	devPort	whichDevice	whichExpPort
P2 Local DIO (one 8255	- three 8-bit DIO banks)		·	
P2 Local 8255 Port A	DiodtP2Local8	DiodpP2Local8	Diodp8255A	DioepP2
(P2 pins 30-37)				
P2 Local 8255 Port B	DiodtP2Local8	DiodpP2Local8	Diodp8255B	DioepP2
(P2 pins 3-10)				
P2 Local 8255 Port C	DiodtP2Local8	DiodpP2Local8	Diodp8255C	DioepP2
(P2 pins 22-28)				
8	IO (one 16-bit DIO bank)			
P3 Local 16-bit Port*	DiodtP3LocalDig16	DiodpP3LocalDig16	DiodpP3LocalDig16	DioepP3
(P3 pins 3-10, 22-29)				
1	DBK20/21 (dual 8255's – six	,	"n" is the expansion car	
P2 Exp 8255-0 Port A	DiodtExp8255	DiodpP2Exp8	(<i>n</i> x8) + Diodp8255A	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-0 Port B	DiodtExp8255	DiodpP2Exp8	(<i>n</i> x8) + Diodp8255B	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-0 Port C	DiodtExp8255	DiodpP2Exp8	(<i>n</i> x8) + Diodp8255C	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-1 Port A	DiodtExp8255	DiodpP2Exp8	(<i>n</i> x8) + Diodp8255A + 4	DioepP2
(see DBK20/21 doc)	Dialt Day 0055			Diam D0
P2 Exp 8255-1 Port B (see DBK20/21 doc)	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255B + 4	DioepP2
(see DBK20/21 doc) P2 Exp 8255-1 Port C	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255C + 4	DioepP2
(see DBK20/21 doc)	DIOUCEXP8255	DIOUPPZEXPO	(see example)	DIGEPPZ
	DBK23 (three 8-bit DIO bar	aka)	"n" is the expansion card	's position in a system
P2 Exp DBK23 Port A	DiodtDbk23	DiodpP2Exp8	(nx4) + DiodpDbk23A	DioepP2
P2 Exp DBK23 Port A P2 Exp DBK23 Port B	DiodtDbk23 DiodtDbk23		(nx4) + DiodpDbk23A (nx4) + DiodpDbk23B	DioepP2
P2 Exp DBK23 Port B P2 Exp DBK23 Port C	DiodtDbk23 DiodtDbk23	DiodpP2Exp8 DiodpP2Exp8	(nx4) + DIOdpDbk23B (nx4) + DiodpDbk23C	DioepP2 DioepP2
	DIOGUDDR23 DBK24 (three 8-bit DIO bar		(11x4) + DIOdpDDk23C	DIGEPPZ
P2 Exp DBK24 Port A	DiodtDbk24	DiodpP2Exp8	(nx4) + DiodpDbk24A	DioepP2
	DiodtDbk24 DiodtDbk24		(nx4) + DIOdpDbk24A (nx4) + DiodpDbk24B	1
P2 Exp DBK24 Port B	DiodtDbk24 DiodtDbk24	DiodpP2Exp8 DiodpP2Exp8	(nx4) + DlodpDbk24B (nx4) + DiodpDbk24C	DioepP2 DioepP2
P2 Exp DBK24 Port C		1 1		1
	DBK25 (one 8-bit DIO bank)		"n" is the expansion card	
P2 Exp DBK25 Port	DiodtDbk25	DiodpP2Exp8	n + DiodpDbk25	DioepP2
WBK17	Diademble 17		Einst sharped an unit (0, 17, 25	
WBK17 Digital Output	DiodtWbk17	DiodpWbk17_8Bit	First channel on unit (9, 17, 25	.) DioeP1

Example of Calculating "whichDevice" for three DBK20 P2 Exp 8255-1 Port C banks.

For the first positioned card n= 0 . Thus for the first card's P2 Exp 8255-1 Port C	<pre>whichDevice: (Note 1) (nx8) + Diodp8255B + 4 = n = 0</pre>	Result: Diodp8255B + 4
For the second positioned card n= 1 . Thus for the second card's P2 Exp 8255-1 Port C	(<i>n</i> x8) + Diodp8255B + 4 = n = 1	Diodp8255B + 12
For the third positioned card n= 2 . Thus for the third card's P2 Exp 8255-1 Port C	(nx8) + Diodp8255B + 4 = n = 2	Diodp8255B + 20

Note 1: The equation is from the *whichDevice* column and "P2 Exp 8255-1" row (shaded), in the preceding table.

Prototypes

C/C++

daqIOReadBit(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD bitNum, PBOOL bitValue);

Visual BASIC

VBdaqIOReadBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal whichDevice&, ByVal whichExpPort&, ByVal bitNum&, bitValue&)

Program References

DAQEX.FRM (VB)

daqIOWrite

Format

daqIOWrite(handle, devType, devPort, whichDevice, whichExpPort, value)

Purpose

daqIOwrite writes to the specified port on the selected device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to perform the IO write
devType	DaqIODeviceType	IO device type
devPort	DaqIODevicePort	IO device port selection
whichDevice	DWORD	IO device instance to write from
whichExpPort	DaqIOExpansionPort	IO device expansion port to write from
value	DWORD	Pointer to IO value to write

Parameter Values

handle: obtained from the daqOpen function devType: see table below devPort: see table below whichDevice: valid values range from 0 to 171 whichExpPort: see table below value: valid values range from 0 to 65,535

Parameter Type Definitions

devType-(DaqIODeviceType)		
Definition Description		
DiodtLocalBitIO	P2 – Local addressing by bit	
DiodtLocal8255	P2 – Local addressing on DaqBook/2000 Series, DaqBoard/2000 Series and cPCI DaqBoard/2000c Series Devices	
DiodtP2Local8	P2 – Local addressing by byte	
DiodtP3LocalDig16	P3 – Local addressing for HS 16-bit Dig I/O	
DiodtP3LocalCtr16	P3 – Local addressing of 16-bit counters	
DiodtP2Exp8	P2 – Expansion addressing by byte	
DiodtExp8255	DBK20, DBK21	
DiodtDbk23	DBK23	
DiodtDbk24	DBK24	
DiodtDbk25	DBK25	
DiodtWbk17	WBK17	

Definition	Description	
Local Bit I/O		
DiodpBitIO	P2 – Addressing by bit	
P2 Sequential 8-Bit Addressing		
DiodpP2Local8	P2 – Local addressing by byte	
DiodpP2LocalIR	P2 – Local Internal register (for configuring P2)	
DiodpP2Exp8	P2 – Expansion adressing by byte	
P3 Digital Port		
DiodpP3LocalDig16	P3 – Local addressing for HS 16-bit Dig I/O	
DiodpP3LocalDigIR	P3 – Local Internal register (for configuring P3)	
Local 8255, Dbk20, Dbk21 (Daq devi	ice and DBK only)	
Diodp8255A	P2 – Digital byte wide Port A	
Diodp8255B	P2 – Digital byte wide Port B	
Diodp8255C	P2 – Digital byte wide Port C	
Diodp8255IR	P2 –Internal register (for configuring P2)	
Diodp8255CHigh	P2 – Digital 4-bit wide Port C	
Diodp8255CLow	P2 – Digital 4-bit wide Port C	
DiodpP3LocalCtr16	P3 – 16-bit Counter	
Dbk23		
DiodpDbk23A	DBK23 – Digital byte wide Port A	
DiodpDbk23B	DBK23 – Digital byte wide Port B	
DiodpDbk23C	DBK23 – Digital byte wide Port C	
DiodpDbk23Unused	Not used	
Dbk24		
DiodpDbk24A	DBK24 – Digital byte wide Port A	
DiodpDbk24B	DBK24 – Digital byte wide Port B	
DiodpDbk24C	DBK24 – Digital byte wide Port C	
DiodpDbk24Unused	Not used	
DiodpDbk25	DBK25	
Wbk17		
DiodpWbk17_8Bit	WBK17 – 8-bit digital output	

whichExpPort-(DaqIOExpansionPort)		
Definition	Description	
DioepP1	Note that DioepP1 is only for DigiBook and WaveBook applications.	
DioepP2	DBK20/21 Port 2	
DioepP3	DBK20/21 Port 3	

Returns

DagError See Dag Error Table

For more details on error messages refer to the Daq Error Table.

Function Usage

The daqIOWrite function will output to the port the bit battern represented by the value parameter. Normally, if the selected port is a byte-wide port, the port state will occupy the low-order byte of the value parameter. Digital I/O channels for the port corresponds to each bit within this low-order byte. If the bit is set, it indicates the channel is in a high state. If the bit is not set, the channel is indicated to be in a low state. This function requires that daqIOGet8255Conf or daqSetOption be called prior to invocation to configure the specifed port as an output port.

Local I/O

Those devices which support the P2 port have built-in Intel 8255C chips which can be used as general purpose I/O. The 8255C has 3 configurable DIO ports (PortA, PortB, PortC). These ports are 8-bit ports which can be individually programmed as either input or output ports. All three of the local P2 ports can be written asynchronously using the daqIOWrite function.

Additionally, there is a 16-bit Digital port on P3 of the main unit.* If P3 is supported, the DaqBook/100 Series, DaqBook/200 Series, DaqBook/200 Series, DaqBoard, ISA-type DaqBoard, DaqBook/2000 Series, DaqBoard/2000 Series*, and cPCI DaqBoard/2000c Series devices allow this port to be used as a high speed digital port which can be scanned synchronously along with other analog channels in a acquisition.

Some devices, such as the DaqBook/2000 Series, DaqBoard/2000 Series [and 2000c Series] products, can also access this port asynchronously as a general purpose DIO port. If using the DaqBoard/2000 Series [or 2000c Series] products, the daqIORead function can be used to read this port asynchronously.

*Note: P3 for DaqBoard/2000 Series boards is obtained by connecting an appropriate DBK200 Series board to the DaqBoard/2000 Series board's P4 connector, via cable.

Expansion I/O

There are several options that allow for DIO expansion. These expansion options, referred to as the DBK20 Series cards, operate off of the main unit's P2 port and can be accessed asynchronously. The expansion cards vary in number of DIO, connectivity, and isolation characteristics. Refer to the *DBK Cards and Options User's Manual* (p/n 457-0905) in regard to the specifics of your particular DBK20 Series card.

When using a DBK20 Series expansion card on P2, the Local P2 port becomes inaccessible.

The following table describes typical port settings. "n" is the expansion card's position in a system. In a three
card system the first card would have $n = 0$, the second card $n = 1$, and the third card $n = 2$.

Digital I/O Port	devType	devPort	whichDevice	whichExpPort
P2 Local DIO (one 8255 - three 8-bit DIO banks)				
P2 Local 8255 Port A	DiodtP2Local8	DiodpP2Local8	Diodp8255A	DioepP2
(P2 pins 30-37)				
P2 Local 8255 Port B	DiodtP2Local8	DiodpP2Local8	Diodp8255B	DioepP2
(P2 pins 3-10)				
P2 Local 8255 Port C	DiodtP2Local8	DiodpP2Local8	Diodp8255C	DioepP2
(P2 pins 22-28)				
P3 Local DIO/HS Digital	IO (one 16-bit DIO bank)			
P3 Local 16-bit Port*	DiodtP3LocalDig16	DiodpP3LocalDig16	DiodpP3LocalDig16	DioepP3
(P3 pins 3-10, 22-29)				
	DBK20/21 (dual 8255's – six	,	"n" is the expansion car	
P2 Exp 8255-0 Port A	DiodtExp8255	DiodpP2Exp8	(<i>n</i> x8) + Diodp8255A	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-0 Port B	DiodtExp8255	DiodpP2Exp8	(<i>n</i> x8) + Diodp8255B	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-0 Port C	DiodtExp8255	DiodpP2Exp8	(<i>n</i> x8) + Diodp8255C	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-1 Port A	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255A + 4	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-1 Port B	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255B + 4	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-1 Port C	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255C + 4	DioepP2
(see DBK20/21 doc)			(see example)	
P2 Expansion DIO with	DBK23 (three 8-bit DIO ban	, /	"n" is the expansion card	
P2 Exp DBK23 Port A	DiodtDbk23	DiodpP2Exp8	(nx4) + DiodpDbk23A	DioepP2
P2 Exp DBK23 Port B	DiodtDbk23	DiodpP2Exp8	(nx4) + DiodpDbk23B	DioepP2
P2 Exp DBK23 Port C	DiodtDbk23	DiodpP2Exp8	(nx4) + DiodpDbk23C	DioepP2
P2 Expansion DIO with	DBK24 (three 8-bit DIO ban	lks)		
P2 Exp DBK24 Port A	DiodtDbk24	DiodpP2Exp8	(nx4) + DiodpDbk24A	DioepP2
P2 Exp DBK24 Port B	DiodtDbk24	DiodpP2Exp8	(nx4) + DiodpDbk24B	DioepP2
P2 Exp DBK24 Port C	DiodtDbk24	DiodpP2Exp8	(nx4) + DiodpDbk24C	DioepP2
P2 Expansion DIO with	DBK25 (one 8-bit DIO bank)	1	"n" is the expansion care	l's position in a system.
P2 Exp DBK25 Port	DiodtDbk25	DiodpP2Exp8	n + DiodpDbk25	DioepP2
WBK17				
WBK17 Digital Output	DiodtWbk17	DiodpWbk17_8Bit	First channel on unit (9, 17, 25.) DioeP1

Example of Calculating "whichDevice" for three DBK20 P2 Exp 8255-1 Port C banks.

For the first positioned card $n = 0$. Thus for the first card's P2 Exp 8255-1 Port C	<pre>whichDevice: (Note 1) (nx8) + Diodp8255B + 4 = n = 0</pre>	Result: Diodp8255B + 4
For the second positioned card n= 1 . Thus for the second card's P2 Exp 8255-1 Port C	(<i>n</i> x8) + Diodp8255B + 4 = n = 1	Diodp8255B + 12
For the third positioned card n = 2 . Thus for the third card's P2 Exp 8255-1 Port C	(<i>n</i> x8) + Diodp8255B + 4 = n = 2	Diodp8255B + 20

Note 1: The equation is from the *whichDevice* column and "P2 Exp 8255-1" row (shaded), in the preceding table.

Prototypes

C/C++

daqIOWrite(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD value);

Visual BASIC

VBdaqIOWrite&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal whichDevice&, ByVal whichExpPort&, ByVal value&)

Program References

DAQDIGIOEX01.CPP, DBK20_21EX.CPP, DBK23_24EX.CPP, DAQEX.FRM (VB)

Format

```
daqIOWriteBit(handle, devType, devPort, whichDevice, whichExpPort, bitNum,
bitValue)
```

Purpose

daqIOWriteBit writes a specified bit on the selected device and port.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle of the device to perform an IO write to
devType	DaqIODeviceType	IO device type
devPort	DaqIODevicePort	IO device port selection
whichDevice	DWORD	IO device selection
whichExpPort	DaqIOExpansionPort	IO device expansion port address
bitNum	DWORD	Bit number on port to write
bitValue	BOOL	Bit value to write (true - high, false - low)

Parameter Values

handle: obtained from the dagOpen function
devType: see table below
devPort: see table below
whichDevice: valid values range from 0 to 171
whichExpPort: see table below
bitNum: valid value range from 1 to 16
bitValue: valid values are either true ($\neq 0$) or false (= 0)

Parameter Type Definitions

devType-(DaqIODeviceType)		
Definition Description		
DiodtLocalBitIO	P2 – Local addressing by bit	
DiodtLocal8255	P2 – Local addressing on DaqBook/2000 Series, DaqBoard/2000 Series and cPCI DaqBoard/2000c Series devices	
DiodtP2Local8	P2 – Local addressing by byte	
DiodtP3LocalDig16	P3 – Local addressing for HS 16-bit Dig I/O	
DiodtP3LocalCtr16	P3 – Local addressing of 16-bit counters	
DiodtP2Exp8	P2 – Expansion addressing by byte	
DiodtExp8255	DBK20, DBK21	
DiodtDbk23	DBK23	
DiodtDbk24	DBK24	
DiodtDbk25	DBK25	

devPort-(DaqIODevicePort)			
Definition Description			
Local Bit I/O			
DiodpBitIO	P2 – Addressing by bit		
P2 Sequential 8-Bit Addressing			
DiodpP2Local8	P2 – Local addressing by byte		
DiodpP2LocalIR	P2 – Local Internal register (for configuring P2)		
DiodpP2Exp8	P2 – Expansion adressing by byte		
P3 Digital Port			
DiodpP3LocalDig16	P3 – Local addressing for HS 16-bit Dig I/O		
DiodpP3LocalDigIR	P3 – Local Internal register (for configuring P3)		
Local 8255, Dbk20, Dbk21 (Daq devic	ce and DBK only)		
Diodp8255A	P2 – Digital byte wide Port A		
Diodp8255B	P2 – Digital byte wide Port B		
Diodp8255C	P2 – Digital byte wide Port C	P2 – Digital byte wide Port C	
Diodp8255IR	P2 –Internal register (for configuring P2)		
Diodp8255CHigh	P2 – Digital 4-bit wide Port C		
Diodp8255CLow	P2 – Digital 4-bit wide Port C		
DiodpP3LocalCtr16	P3 – 16-bit Counter	P3 – 16-bit Counter	
Dbk23			
DiodpDbk23A	DBK23 – Digital byte wide Port A		
DiodpDbk23B	DBK23 – Digital byte wide Port B		
DiodpDbk23C	DBK23 – Digital byte wide Port C		
DiodpDbk23Unused	Not used		
Dbk24			
DiodpDbk24A	DBK24 – Digital byte wide Port A		
DiodpDbk24B	DBK24 – Digital byte wide Port B		
DiodpDbk24C	DBK24 – Digital byte wide Port C	DBK24 – Digital byte wide Port C	
DiodpDbk24Unused	Not used	Not used	
DiodpDbk25	DBK25		

whichExpPort-(DaqIOExpansionPort)		
Definition Description		
DioepP1	Note that DioepP1 is for DigiBook only.	
DioepP2	DBK20/21 Port 2	
DioepP3	DBK20/21 Port 3	

Returns

DagError See Dag Error Table

Function Usage

The daqIOWriteBit function will set the current state of the selected bit in the bitValue parameter. The selected bit (specified by the bitNum parameter) corresponds to the I/O channel on the port which is being written to. The bitValue can be set to true indicating a high state or false indicating a low state. This function requires that daqIOGet8255Conf or daqSetOption be called prior to invocation to configure the specifed port as an output port.

Local I/O

Those devices which support the P2 port have built-in Intel 8255C chips which can be used as general purpose I/O. The 8255C has 3 configurable DIO ports (PortA, PortB, PortC). These ports are 8-bit ports which can be individually programmed as either input or output ports. All three of the local P2 ports can be programmed asynchronously using the daqIOWriteBit function.

Additionally, there is a 16-bit Digital port on P3 of the main unit.* If devices allow this port to be used as a high speed digital port which can be scanned synchronously along with other analog channels in a acquisition.

*Note: P3 for DaqBoard/2000 Series boards is obtained by connecting an appropriate DBK200 Series board to the DaqBoard/2000 Series board's P4 connector, via cable.

Some devices, such as the DaqBook/2000 Series, DaqLab/2000 Series, DaqScan/2000 Series, DaqBoard/2000 Series [and 2000c Series] products, can also access this port asynchronously as a general purpose DIO port. If using the DaqBoard/2000 Series [or 2000c Series] products, the daqIORead function can be used to read this port asynchronously.

Expansion I/O

There are several expansion options (DBK2x) that allow the DIO to be expanded on the main unit of the device. These expansion units operate off of the P2 port of the main unit (if the main unit supports P2) and can be accessed asynchronously. These expansion cards vary in numbers of DIO as well as DIO connectivity and isolation characteristics (see the User Manual on characteristics of your particular DBK2x card). All of the DBK2x series expansion cards can be accessed asynchronously.

When using a DBK20 Series expansion card on P2, the Local P2 port becomes inaccessible.

The following table describes typical port settings. "n" is the expansion card's position in a system. In a three card system the first card would have n = 0, the second card n = 1, and the third card n = 2.

Digital I/O Port	devType	devPort	whichDevice	whichExpPort
P2 Local DIO (one 8255	- three 8-bit DIO banks)	*	· · ·	
P2 Local 8255 Port A	DiodtP2Local8	DiodpP2Local8	Diodp8255A	DioepP2
(P2 pins 30-37)				
P2 Local 8255 Port B	DiodtP2Local8	DiodpP2Local8	Diodp8255B	DioepP2
(P2 pins 3-10)				
P2 Local 8255 Port C	DiodtP2Local8	DiodpP2Local8	Diodp8255C	DioepP2
(P2 pins 22-28)				
P3 Local DIO/HS Digital	IO (one 16-bit DIO bank)			
P3 Local 16-bit Port*	DiodtP3LocalDig16	DiodpP3LocalDig16	DiodpP3LocalDig16	DioepP3
(P3 pins 3-10, 22-29)				
	DBK20/21 (dual 8255's – six		"n" is the expansion car	
P2 Exp 8255-0 Port A	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255A	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-0 Port B	DiodtExp8255	DiodpP2Exp8	(<i>n</i> x8) + Diodp8255B	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-0 Port C	DiodtExp8255	DiodpP2Exp8	(<i>n</i> x8) + Diodp8255C	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-1 Port A	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255A + 4	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-1 Port B	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255B + 4	DioepP2
(see DBK20/21 doc)				
P2 Exp 8255-1 Port C	DiodtExp8255	DiodpP2Exp8	(nx8) + Diodp8255C + 4	DioepP2
(see DBK20/21 doc)			(see example)	
1	DBK23 (three 8-bit DIO bar	· · · · · · · · · · · · · · · · · · ·	"n" is the expansion card	
P2 Exp DBK23 Port A	DiodtDbk23	DiodpP2Exp8	(nx4) + DiodpDbk23A	DioepP2
P2 Exp DBK23 Port B	DiodtDbk23	DiodpP2Exp8	(nx4) + DiodpDbk23B	DioepP2
P2 Exp DBK23 Port C	DiodtDbk23	DiodpP2Exp8	(nx4) + DiodpDbk23C	DioepP2
	DBK24 (three 8-bit DIO bar		1	
P2 Exp DBK24 Port A	DiodtDbk24	DiodpP2Exp8	(nx4) + DiodpDbk24A	DioepP2
P2 Exp DBK24 Port B	DiodtDbk24	DiodpP2Exp8	(nx4) + DiodpDbk24B	DioepP2
P2 Exp DBK24 Port C	DiodtDbk24	DiodpP2Exp8	(nx4) + DiodpDbk24C	DioepP2
	DBK25 (one 8-bit DIO bank		"n" is the expansion card	l's position in a system.
P2 Exp DBK25 Port	DiodtDbk25	DiodpP2Exp8	n + DiodpDbk25	DioepP2
WBK17				
WBK17 Digital Output	DiodtWbk17	DiodpWbk17_8Bit	First channel on unit (9, 17, 25.) DioeP1

Example of Calculating "whichDevice" for three DBK20 P2 Exp 8255-1 Port C banks.

For the first positioned card $n = 0$. Thus for the first card's P2 Exp 8255-1 Port C	<pre>whichDevice: (Note 1) (nx8) + Diodp8255B + 4 = n = 0</pre>	Result : Diodp8255B + 4
For the second positioned card n= 1 . Thus for the second card's P2 Exp 8255-1 Port C	(<i>n</i> x8) + Diodp8255B + 4 = n = 1	Diodp8255B + 12
For the third positioned card n = 2 . Thus for the third card's P2 Exp 8255-1 Port C	(<i>n</i> x8) + Diodp8255B + 4 = n = 2	Diodp8255B + 20

Note 1: The equation is from the *whichDevice* column and "P2 Exp 8255-1" row (shaded), in the preceding table.

Prototypes

C/C++

daqIOWriteBit(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD bitNum, BOOL bitValue);

Visual BASIC

VBdaqIOWriteBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal whichDevice&, ByVal whichExpPort&, ByVal bitNum&, ByVal bitValue&)

Program References

DAQEX.FRM (VB)

daqOnline

Format

daqOnline(handle, online)

Purpose

dagOnline determines if a device is online.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle of the device to test for online
online	PBOOL	Boolean indicating whether the device is currently online

Parameter Values

handle: obtained from the daqOpen function
online: a pointer to a boolean value; values are either true (≠ 0) or false (= 0)

Returns

DerrNoError No error

Function Usage

The handle parameter for this function must be a valid device handle which has been opened using the daqOpen function. The online parameter indicates the current online state of the device (true = device online; false = device not online).

Prototypes

C/C++

daqOnline(DaqHandleT handle, PBOOL online);

Visual BASIC

VBdaqOnline&(ByVal handle&, online&)

Program References

None

daqOpen

Format

daqOpen(LPSTR daqName)

Purpose

daqOpen opens an installed device for operation.

Parameter Summary

Parameter	Туре	Description
daqName	LPSTR	String representing the name of the device to be opened.

Parameter Values

daqName: a pointer to a string of characters—no effective range of values applies

Returns

handle A handle to the specified device (-1 if open failed).

For more details on error messages refer to the Daq Error Table.

Function Usage

The daqOpen function will initiate a session for the device name specified by the daqName parameter by opening the device, initializing it, and preparing it for further operation. The daqName specified must reference a currently configured device. Refer to **Daq Configuration** utility sections of your user's manual (on the CD-ROM) if needed. An example of assigning a new Device Name follows shortly.

Example of Accessing and Using the Daq Configuration Control Panel Applet

Address 🞯 Control Panel	🞇 Daq* Configuration	×
Add New Hardware Add/Remove Programs Add/Remove Programs Corel Versions Daq* Configuration Daq* Configuration Device Inventory Computer DaqBoard2K0 2 DaqBook0 Properties Add Device Remove Close	DaqBoard/2000 Properties Test Hardware Device Settings	
	OK Cancel Apply	

To access the **Daq Configuration** applet and change its device name:

- Run the **Daq Configuration** control panel applet. Navigation from the desktop to the applet is as follows:
 - Start \Rightarrow Settings \Rightarrow Control Panel \Rightarrow Daq Configuration
- Double-click on the Device Inventory's DaqBoard2K0 icon. The **DaqBoard/2000 Properties** tab will appear.

• Enter a device name in the text box, or use the default "DaqBoard2K0." **Device Name** is for identifying the specific DaqBoard/2000 Series board [or cPCI DaqBoard/2000c Series board]. Note that **Device Name** actually refers to the PCI[cPCI] slot and not to the actual DaqBoard/2000 Series board[or cPCI DaqBoard/2000c].

Programming Note:

It should be noted that the daqName parameter of daqOpen should correspond to the name of the device presented here. In this case, "DaqBoard2K0" should be used as the daqName to open the DaqBoard/2000 Series board [or cPCI DaqBoard/2000c] represented here. Notice the device named "DaqBook0" directly under the "DaqBoard2k0" device. To open the this device the daqName parameter of daqOpen should be set to "DaqBook0"

- Verify "DaqBoard/2000" is listed as the **Device Type.** Note that available device types can be viewed via the pull-down list.
- Confirm that the DaqBoard/2000 text box shows a Bus #, Slot #, and Serial Number.
- Verify that the DaqBoard/2000's serial number matches the serial number obtained in step 5.

Steps 5 and 6 apply only to DaqBoard/2000 Series [and 2000c Series] devices.

Obtaining a Device's handle

daqOpen should be performed prior to any other operation performed on the device. This function will return a device handle that is used by other functions to reference the device. Once the device has been opened, the device handle should be used to perform subsequent operations on the device. If successful, this function will return a non-negative handle which can then be used in subsequent API calls.

Most functions in this manual require a device handle in order to perform their operation. When the device session is complete, daqClose may be called with the device handle to close the device session.

If a -1 is returned as the handle then daqOpen function failed to properly open the device. If this occurs, the **returned handle is not valid and cannot be used** in any other handle based function. The -1 handle constitutes a fatal error condition and the device cannot be further accessed.

Prototypes

C/C++

daqOpen (LPSTR daqName);

Visual BASIC

VBdaqOpen& (ByVal daqName\$)

Program References

```
DAQADCEX01.CPP, DAQADCEX02.CPP, DAQDIGIOEX01.CPP, DAQDIGIOEX02.CPP, DAQEX.FRM (VB)
```

daqProcessError

Also See: daqSetDefaultErrorHandler, daqGetLastError, daqDefaultErrorHandler

Format

daqProcessError (handle, errCode)

Purpose

daqProcessError initiates an error for processing by the driver.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the specified error is to be processed
errCode	DaqError	Pointer to a value which specifies the device error code to process

Parameter Values

handle: obtained from the daqOpen function errCode: a pointer to a value ranging from 0 to 1,000

Returns

For more details on error messages refer to the Daq Error Table.

Function Usage

The daqProcessError function can be used to initiate processing for a device-defined error.

Prototypes

C/C++

daqProcessError(DaqHandleT handle, DaqError errCode);

Visual BASIC

VBdaqProcessError&(ByVal handle&, ByVal errCode&)

Program References

None

Also See: daqCalSetup, daqCalConvert, daqCalSetupConvert

Format

daqReadCalFile (handle, calfile)

Purpose

daqReadCalFile is the initialization function for reading in the calibration constants from the calibration text file.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device which will be associated with the calibration file
calfile	LPSTR	File name with optional path information of the calibration file

Parameter Values

handle: obtained from the daqOpen function

calfile: a pointer to a string of characters; if the value of calfile is null or empty (""), the default calibration file DAQBOOK.CAL will be read.

Returns

DerrInvCalfileError occurred while opening or reading calibration fileDerrNoErrorNo error

For more details on error messages refer to the Daq Error Table.

Function Usage

The dagReadCalFile function (usually called once at the beginning of a program) will read all the calibration constants from the specified file. The calfile parameter specifies the path\filename of the calibration file to read. If calibration constants for a specific channel number and gain setting are not contained in the file, ideal calibration constants will be used—essentially performing no calibration for that channel. If an error occurs while trying to open the calibration file, ideal calibration constants will be used for all channels and a non-zero error code will be returned by the dagReadCalFile function.

Prototypes

C/C++

daqReadCalFile(DaqHandleT handle, LPSTR calfile);

Visual BASIC

VBdaqReadCalFile&(ByVal handle&, ByVal calfile\$)

Program References

DBK19EX.CPP, DBK52EX.CPP

daqSetDefaultErrorHandler

Also See: daqDefaultErrorHandler, daqGetLastError, daqProcessError, daqSetErrorHandler

Format

daqSetDefaultErrorHandler(handler)

Purpose

daqSetDefaultErrorHandler sets the driver to use the default error handler specified for all devices.

Parameter Summary

Parameter	Туре	Description
handler	DaqErrorHandlerFPT	Pointer to a user-defined error handler function.

Parameter Values

handler: a pointer to a user-defined function

Returns

DerrNoError No error

Function Usage

The daqSetDefaultErrorHandler function allows you to set the driver to use a default error handler specified by the DaqErrorHandleFPT. The DaqErrorHandleFPT parameter should point to the function defined by the application that will be used to process the error codes passed to it. This parameter should be set prior to calling the function. This function can also be used to disable on-screen error reporting by setting the DaqErrorHandleFPT to null(0).

For more details on error messages refer to the Daq Error Table.

Prototypes

C/C++

daqSetDefaultErrorHandler(DaqErrorHandlerFPT handler);

Visual BASIC

VBdaqSetDefaultErrorHandler&(ByVal handler&)

Program References

None

daqSetErrorHandler

Also See: daqSetDefaultErrorHandler, daqDefaultErrorHandler, daqGetLastError, daqProcessError

Format

vdaqSetErrorHandler (handle, handler)

Purpose

daqSetErrorHandler specifies the routine to call when an error occurs in any function for the specified device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to which to attach the specified error handler
handler	DaqErrorHandlerFPT	Pointer to a user-defined error handler function

Parameter Values

handle: obtained from the dagOpen function handler: a pointer to a user-defined function

Returns

DerrNoError No error

Function Usage

The daqSetErrorHandler function specifies an error handler for the device currently open with the handle parameter. It should be used if it is desirable to use a error handler other than the default error handler for a specific device. This function allows the application to specify its own routine to be called when errors occur on processing commands for the device. If it is desirable to have no action occur when a command error is detected on the device, use this function with a null (0) parameter. The default error routine is daqDefaultErrorHandler.

For more details on error messages refer to the Daq Error Table.

Prototypes

C/C++

daqSetErrorHandler(DaqHandleT handle, DaqErrorHandlerFPT handler);

Visual BASIC

VBdaqSetErrorHandler&(ByVal handle&, ByVal handler&)

Program References

DAQADCEX05.CPP, DAQADCEX06.CPP, DAQEX.FRM (VB)

daqSetOption

Also See: daqAdcExpSetBank

Format

daqSetOption (handle, chan, flags, optionType, optionValue)

Purpose

daqSetOption allows the setting of options for a device's channel/signal path configuration.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	The handle to the device for which to set the option
chan	DWORD	The channel number on the device for which the option is to be set
flags	DWORD	Flags specifying the options to use
optionType	DaqOptionType	Specifies the type of option
optionValue	FLOAT	The value of the option to set

Parameter Values

handle: obtained from the dagOpen function.

chan: valid values range from 0 to 271

flags: see table below

optionType: see table below

optionValue: values available depend on optionType parameter --see optionType table below

Parameter Type Definitions

flags		
Definition	Description	
DcofChannel	Apply option to the channel specified by the chan parameter.	
DcofModule	Apply option to the entire module for which chan is located.	
DcofSubChannelLow	Counter Low Word. SubChannel identifier for WBK17 Detection Options. Use enum + detection number	
(For WBK17 Only)	(1 through 16). Note that WBK17 Detector Options require sub-channel in DaqChanOptionFLagType.	
(i of WERTH only)	Some Option Types have enumerated Option Values (DaqChanOptionValue).	
DcofSubChannelHigh	Counter High Word. SubChannel identifier for WBK17 Detection Options. Use enum + detection number	
(For WBK17 Only) (1 through 16). Note that WBK17 Detector Options require sub-channel in DaqChanOptionF		
	Some Option Types have enumerated Option Values (DagChanOptionValue).	

optionType-Daq0	optionType-DaqOptionType				
	DBK 4 Options				
Option Type (optionType)	Description	Option Value (optionValue)	Description		
DdcotDbk4MaxFreq	Set the DBK4 Low Pass	DcovDbk4Freq18kHz	LPF 3dB level is 18MHz		
	Filter (LPF) Frequency	DcovDbk4Freq9000Hz	LPF 3dB level is 9MHz		
		DcovDbk4Freq4500Hz	LPF 3dB level is 4.5MHz		
		DcovDbk4Freq2250Hz	LPF 3dB level is 2.25MHz		
		DcovDbk4Freq1125Hz	LPF 3dB level is 1125Hz		
		DcovDbk4Freq563Hz	LPF 3dB level is 563Hz		
		DcovDbk4Freq281Hz	LPF 3dB level is 281Hz		
		DcovDbk4Freq141Hz	LPF 3dB level is 141Hz		
DdcotDbk4SetBaseline	Set the DBK4 Baseline usage	DcovDbk4BaselineNever	Baseline is not set when configuring the scan group (see daqAdcSetScan)		
		DcovDbk4BaselineOneShot	Baseline is set when configuring the next scan group (see daqAdcSetScan)		

(continued)

(DBK4 Continued)

Option Type (optionType)	Description	Option Value (optionValue)	Description
DdcotDbk4Excitation	Enable/Disable the excitation	TRUE	Enables (turn on) excitation source
Ducoudbk4Excitation	source on the DBK4	FALSE	Disables (turn off) excitation source
	Enable/Disable the Switched Capacitor Clock on the DBK4	TRUE	Enables Switched Capacitor Clock
DdcotDbk4Clock			(must be enabled if using filter)
		FALSE	Disables Switched Capacitor Clock
DdcotDbk4Gain	For Internal Use	N/A	N/A

	DBK 7 Options				
DdcotDbk7Slope	Set DBK7/DBK5555	TRUE	Count on Rising Edge of Signal		
DdcotDbk7510pe	channel to count on Rising/Falling edge	FALSE	Count on Falling Edge of Signal		
DdcotDbk7DebounceTime	Set the DBK7/DBK55	DcovDbk7DeboucneNone	No debouncing		
DdcotDbk55DebounceTime	signal Debounce Setting	DcovDbk7Debounce600us	600µs Debounce time		
		DcovDbk7Debounce2500us	2500µs Debounce time		
		DcovDbk7Debounce10ms	10ms Debounce time		
DdcotDbk7MinFreq DdcotDbk55MinFreq	Set the DBK7/DBK55 minimum measured frequency	0-1,000,000	Set the DBK7/DBK55 minimum measured frequency to the value specified		
DdcotDbk7MaxFreq DdcotDbk55MaxFreq	Set the DBK7/DBK55 maximum measured frequency	0-1,000,000	Set the DBK7/DBK55 minimum measured frequency to the value specified		

DBK 50 Options			
DdcotDbk50Gain	For Internal Use	N/A	N/A

DBK 90 Options			
DdcotDbk90StartChanOn	Set Channel to DBK90		
DdcotDbk90StartChanOffAll	Clear all DBK90 channels		
DdcotDbk90StartChanOff	Clear Channel to DBK90		
Option Type DmotDbk90GlitchReject	= 2 Used to reject high magnitude changes in the data stream.		
Option Values DmovDbk90GlitchRejectOff DmovDbk90GlitchRejectOn	 = 0 Turns glitch rejection off. = 1 Turns glitch rejection on. 		

DBK 100 Options Note: DBK100 devices make use of the DBK90 Option Types and Values. See preceding DBK90 section.

optionType-DaqOp	LIONTYPE CONTI	-	
Option Type (optionType)	Description	Option Value (optionValue)	Description
	Main U	Jnit Options	
DbotFifoOverflowMode	Enable/Disable FIFO flushing upon overrun of	TRUE	Upon FIFO overrun condition the acquisition will terminate but the FIFO will NOT be flushed until all the data is transferred out of the FIFO
botriioveriiownode	the FIFO (used w/WBK30)	FALSE	Upon FIFO overrun condition the acquisition will terminate and the FIFO will be immediately flushed. Once flushed no data may be retrieved from the FIFO.
		TRUE	Allows data to be continuously acquired to the FIFO without transferring data from the FIFO until the acquisition has been completed. This mode is useful when it is desirable to take a pre-defined amount of pre-trigger data.
DbotFifoCycleMode	Enables/Disables overwriting of data within the FIFO. (used w/WBK30)	FALSE	Will not allow the old FIFO data to be overwritten. This mode requires that either the entire acquisition be acquired within the FIFO or that data in the FIFO be continuously transferred to the PC. This mode is useful when collecting a non-pre- triggered acquisition of unknown or infinite length or a pre-trigger acquisition of unknown or infinite length. This mode requires that the application continuously transfer data from the FIFO.
DbotFifoCycleSize	Cycle buffer length in 16- bit WORDs (used w/WBK30)	1-2,684,354,550	Specifies the amount of the FIFO to use for the specified FIFO operation. This value can never exceed the memory size of the WBK30 module. If using pre-trigger with the DbotFifoCycleMode mode the value should be: pre-trigger size + post-trigger size
DbotFifoFlush	Flush all data in the FIFO now (used w/WBK30)	N/A	Executes an immediate flushing of the WBK30 FIFO. All data will be removed from the FIFO and will no longer be available for transfer
DbotFifoNoFlushOnDisarm	Disable Buffer Flushing upon Disarm (used w/WBK30)	TRUE	Specifies that the data is to remain in the FIFO after the acquisition has been completed or the acquisition has been disarmed. The FIFO data will be available for transfer following a disarm operation.
		FALSE	Specifies that the data is to be flushed from the FIFO after the acquisition has been has been disarmed by the application. The FIFO data will NOT be available for transfer following a disarm operation.

Option Type and Value Definitions ContinuedDagOptionType Digital I/O, Counter and Timer Options				
Option Type (optionType)	Description	Option Value (optionValue)	Description	
0	Set Input/Output mode for 8-	DcovDigitalInput	Set the 8-bit local P2 port channel to be an input channel	
DcotP2Local8Mode	bit Local P2 port channel	DcovDigitalOutput	Set the 8-bit local P2 port channel to be an output channel	
DcotP2Exp8Mode	Set Input/Output mode for 8-	DcovDigitalInput	Set the 8-bit expansion P2 port channel to be an input channel	
20001 22mponode	bit Expansion P2 port channel	DcovDigitalOutput	Set the 8-bit expansion P2 port channel to be an output channel	
DcotP3Local16Mode	Set Input/Output mode for	DcovDigitalInput	Set the 16-bit local P3 port to be an input channel	
	16-bit Local P3 port	DcovDigitalOutput	Set the 16-bit local P3 port to be an output channel	
	Enables/Disables cascading counter channels on	DcovCounterCascade	Enable cascading of 16-bit counters into 32-bit counters	
DcotCounterCascade	DaqBook/2000 Series, DaqBoard/2000 Series, and cPCI DaqBoard/2000c Series.	DcovCounterSingle	Use single 16-bit counters – do not cascade counters.	
DcotCounterMode	Enables/Disables Clear on Read of counter channel on DaqBook/2000 Series,	DcovCounterClearOnRead	Enable clear on read of the selected counter(s). When counter channels are included in the acquisition scanning and pulse counting is required this mode must be set	
	DaqBoard/2000 Series and cPCI DaqBoard/2000c Series.	DcovCounterTotalize	Disables clear on read of the selected counter(s). This mode allows counters to free-run in a totalizing mode of operation.	
	Turn Counter Channel On/Off or manually clear counter w/ DaqBook/2000 Series, DaqBoard/2000 Series [and /2000c Series] products. This mode should only be used when reading counters asynchronously	DcovCounterOn	Enable counting by turning the counter channel On	
DcotCounterControl		DcovCounterOff	Disable counting by turning the counter channel Off	
		DcovCounterManualClear	Manually clear the counter channel. Counter will continue to count if still enabled.	
	Turn ALL Counter Channels On/Off or manually clear ALL Counter Channels w/ DaqBook/2000 Series, DaqBoard/2000 Series [and /2000c Series] product.	DcovCounterOn	Enable counting for ALL counter channels by turning the counter channels On	
DmotCounterControl		DcovCounterOff	Disable counting for ALL counter channels by turning the counter channels Off	
	This mode should only be used when reading counters asynchronously	DcovCounterManualClear	Manually clear the ALL counter channels. Counters will continue to count if still enabled.	
DbotOverSampleAmount	Used to enable and set the sample value for, or disable, oversampling (averaging) of data before data is delivered to the buffer.	0 thru 13 (for 14 sample settings 2, 4, 8, 16, 32, 64, 128, etc. up to 16384)	0,1 disables oversampling. Number of samples 2, 4, 8, 16, 32, 64 16384; where 0 sets 2, 1 sets 4, 2 sets 8 13 sets 16,384 samples.	
	Selects Counter Edge Detection (Rising/Falling)	TRUE	Increment Counter on Rising Edge of input signal	
DcotCounterEdge	for DaqBook/2000 Series, DaqBoard/2000 Series [and /2000c Series] products	FALSE	Increment Counter on Falling Edge of input signal	
DcotTimerDivisor	16-bit Number (freq = 1MHz / (Divisor + 1))	0-65,535	16-bit value divides the 1MHz clock by 1 to 65535	
DcotTimerControl	Turn Timer Channel On/Off w/ DaqBook/2000 Series,	DcovTimerOn	Enables Timer Channel Output by turning the Timer Channel On.	
	DaqBoard/2000 Series [and /2000c Series] products.	DcovTimerOff	Disables Timer Channel Output by turning the Timer Channel Off.	
DmotTimerControl	Turn ALL Timer Channel(s) On/Off w/ DaqBook/2000	DcovTimerOn	Enables ALL Timer Channel Outputs by turning all the Timer Channels On.	
Durg CI THIGT COLLET OT	Series, DaqBoard/2000 Series [and /2000c Series] products.	DcovTimerOff	Disables ALL Timer Channel Outputs by turning all the Timer Channels Off.	

Option Type and Value D	Definitions ContinuedDaqOptionTy	pe	
	eries Device Options		
Option Type (optionType)	Option Value (optionValu	e)	Description
DcotCounterEnhDebounceTime			Sets debounce to:
	DcovCounterEnhDebounce500ns	= 0	500 ns
Used to bypass the debounce mode, or to set a channel's comparator output to one of 16	DcovCounterEnhDebounce1500ns	= 1	1500 ns
debounce times. Debounce is used to eliminate	DcovCounterEnhDebounce3500ns	= 2	3500 ns
switch-induced transients typically associated with electro-mechanical devices including relays,	DcovCounterEnhDebounce7500ns	= 3	7500 ns
proximity switches, and encoders.	DcovCounterEnhDebounce15500ns	= 4	15500 ns
Note that there are two debounce modes, one for	DcovCounterEnhDebounce31500ns	= 5	31500 ns
"After Stable" and another for "Before Stable."	DcovCounterEnhDebounce63500ns	= б	63500 ns
See: DcotCounterEnhDebounceTrigger	DcovCounterEnhDebounce127500ns	= 7	127500 ns
	DcovCounterEnhDebounce100us	= 8	100 µs
	DcovCounterEnhDebounce300us	= 9	300 µs
	DcovCounterEnhDebounce700us	= 10	700 µs
	DcovCounterEnhDebounce1500us	= 11	1500 µs
	DcovCounterEnhDebounce3100us	= 12	3100 µs
	DcovCounterEnhDebounce6300us	= 13	6300 µs
	DcovCounterEnhDebounce12700us	= 14	12700 µs
	DcovCounterEnhDebounce25500us	= 15	25500 μs
	DcovCounterEnhDebounceNone	= 16	bypass
DcotCounterEnhEdge			Selects for detection:
Determines whether the rising edge or falling	DcovCounterEnhRisingEdge	= 0	The "Rising Edge"
edge is to be detected.	DcovCounterEnhFallingEdge	= 1	The "Falling Edge"
DcotCounterEnhTickSize			Sets ticksize to:
	DcovCounterEnhTick20 83ns	= 0	20.83 ns
Determines the ticksize; which is the fundamental	DcovCounterEnhTick208_3ns	= 1	208.3 ns
unit of time for period, pulsewidth, and timing measurements.	DcovCounterEnhTick2083_3ns	= 2	2 083.3 ns
	DcovCounterEnhTick20833_3ns	= 3	20833.3 ns
DcotCounterEnhControl	DcovCounterEnhDisable	= 0	Disables counter
	DcovCounterEnhEnable	= 1	Enables counter
	DcovCounterEnhClear	= 2	Clears counter
DmotCounterEnhControl	DcovCounterEnhDisable	= 0	Disables all counters
	DcovCounterEnhEnable	= 1	Enables all counters
	DcovCounterEnhClear	= 2	Clears all counters

Usage Note: Combine the applicable mode with the desired *mode-specific* settings via option values. The following three option values are available for all Option Types listed above.

> DcovCounterEnhMode_Counter DcovCounterEnh_ClearOnRead DcovCounterEnhModeMask_32Bit

Option Type and Value Definitions Continued--DagOptionType 3000 Series Device Options (continued) Option Type (optionType)

DcotCounterEnhDebounceTrigger

Sets the mode of the debounce module to Trigger After Stable, or to Trigger Before Stable.

Option Value (optionValue)

DcovCounterEnhTriggerAfterStable = 0

DcovCounterEnhTriggerAfterStable selects the "Trigger After Stable" mode. This mode rejects glitches and only passes state transitions after a specified period of stability (the debounce time). This mode is used with electro-mechanical devices like encoders and mechanical switches to reject switch bounce and disturbances due to a vibrating encoder that is not otherwise moving. The debounce time should be set short enough to accept the desired input pulse but longer than the period of the undesired disturbance.

Option Value (optionValue)

DcovCounterEnhTriggerBeforeStable = 1

DcovCounterEnhTriggerBeforeStable selects the Trigger Before Stable mode. Use this mode when the input signal has groups of glitches and each group is to be counted as one. The trigger before stable mode will recognize and count the first glitch within a group but reject the subsequent glitches within the group if the debounce time is set accordingly. In this case the debounce time should be set to encompass one entire group of glitches.

30	3000 Series Device Options				
Option Type (optionType)	Option Value (optionVal	ue)	Description		
DcotCounterEnhMapChannel Used to select the mapped channel. For the 3000 Series devices, a mapped channel is one of 4 signals that can get multiplexed into a channel's counter module. The mapped channel can participate with the channel's input signal by gating the counter, clearing the counter, etc.	DcovCounterEnhMap_Channel_0 DcovCounterEnhMap_Channel_1 DcovCounterEnhMap_Channel_2 DcovCounterEnhMap_Channel_3	= 0 = 1 = 2 = 3	Selects the mapped channel to be one of the counter input channels. There are 4 post-debounce channel input signals that can be individually selected as mapped channels. These are: Channel_0 Channel_1 Channel_2 Channel_3		

	Option Type and Value Definitions ContinuedDagOptionType				
	3000 Series Device Options (continued)				
Option Type (optionType)	Option Value (optionValue)	Description			
DcotCounterEnhMe	easurementMode				
Enumeration with	DcovCounterEnhMode_Counter	Counter Mode			
Bit-Masking.	DcovCounterEnhCounter_Totalize	Totalize Mode – The counter counts up and rolls over on the 16-bit or 32-bit boundary.			
The options can be combined.	DcovCounterEnhCounter_ClearOnRead	Clear On Read Mode - The counter is cleared at the beginning of every scan; and the final value of the counte [the value just before it was cleared] is latched and returned to the Wavebook/516.			
	DcovCounterEnhCounter_RollOver	Rollover Mode - The counter continues to count upward rolling over on the 16-bit or 32-bit boundary.			
	DcovCounterEnhCounter_StopOnTop	Stop at the Top Mode - The counter will stop at the top of its count. The top of the count is FFFF for the 16-bit option and FFFFFFFF for the 32-bit option.			
	DcovCounterEnhCounter_LatchOnSOS	Selects start of scan . Latches the counter outputs at the beginning of every scan.			
	DcovCounterEnhCounter_LatchOnMap	Selects the mapped signal to latch the counter outputs. This allows the user to know the exact counter value when an edge is present on another channel.			
	DcovCounterEnhCounter_DecrementOff	Sets the counter decrement option to "off."			
	DcovCounterEnhCounter_DecrementOn	Sets the counter decrement option to "on."			
	DcovCounterEnhCounter_CountChan	Selects channel for count.			
	DcovCounterEnhCounter_CountMap	Selects mapped channel for count.			
	DcovCounterEnhModeMask_16Bit	Selects 16-Bit counter.			
	DcovCounterEnhModeMask_32Bit	Selects 32-Bit counter.			
	DcovCounterEnhModeMaskGatingOff	Selects gating "off."			
	DcovCounterEnhModeMaskGatingOn	Selects gating "on." When " On ", the counter is enabled when the mapped channel to gate the counter is high . When the mapped channel is low , the counter is disabled (but holds the count value).			
	DcovCounterEnhMode_OFF	Turns the Enhanced Counter Mode "off."			
	DcovCounterEnhMode_Counter	Turns the Enhanced Counter Mode "on."			

DcotCounterEnhMeasurementMode (continued)

	Optio	n Type and Value Definitions Contin 3000 Series Device Option	
	Option TypeOption Value(optionType)(optionValue)		Description
DcotCounterEn	hMeasur	ementMode (continued)	
	DcovCo	unterEnhMode_Period	Period Mode
Enumeration with Bit- Masking. The options can be combined.	DcovCou DcovCou	nterEnhPeriod_X1 nterEnhPeriod_X10 nterEnhPeriod_X100 nterEnhPeriod_X1000	Used to select the number of periods to time, per measurement. Choices are: 1, 10, 100, or 1000
be combined.	DcovCou	nterEnhPeriod_MeasChan nterEnhPeriod_MeasMap	Selects to measure input channel's period. Selects to measure the mapped channel's period.
	DcovCou	nterEnhModeMask_16Bit nterEnhModeMask_32Bit nterEnhModeMaskGatingOff	Selects 16-Bit counter. Selects 32-Bit counter. Gating can be selected On or Off. When " On ", the
		nterEnhModeMaskGatingOn	counter is enabled when the mapped channel to gate the counter is high . When the mapped channel is low , the counter is disabled (but holds the count value).
	DcovCo	unterEnhMode_PulseWidth	Pulsewidth Mode
	DcovCou	nterEnhPulseWidth_MeasChan	Selects to measure input channel's pulsewidth.
	DcovCou	nterEnhPulseWidth_MeasMap	Selects to measure the mapped channel's pulsewidth.
	DcovCou	nterEnhModeMask_16Bit	Selects 16-Bit counter.
	DcovCou	nterEnhModeMask_32Bit	Selects 32-Bit counter.
		nterEnhModeMaskGatingOff hterEnhModeMaskGatingOn	Gating can be selected On or Off. When " On ", the counter is enabled when the mapped channel to gate the counter is high . When the mapped channel is low , the counter is disabled (but holds the count value).
	DcovCo	unterEnhMode_Timing	Timing Mode
	DcovCou	nterEnhModeMask_16Bit	Selects 16-Bit counter.
	DcovCou	nterEnhModeMask_32Bit	Selects 32-Bit counter.
		nterEnhModeMaskGatingOff nterEnhModeMaskGatingOn	Gating can be selected On or Off. When " On ", the counter is enabled when the mapped channel to gate the counter is high . When the mapped channel is low , the counter is disabled (but holds the count value).

DcotCounterEnhMeasurementMode (continued)

Option Type and Value Definitions ContinuedDagOptionType						
3000 Series Device Options (continued)						
Option Type (optionType)		Option Value (optionValue)	Description			
DcotCounterEnhMeasurementMode (continued)						
Enumeration with Bit-Masking.	DcovCo	ounterEnhMode_Encoder	Encoder Mode			
	DcovCounterEnhEncoder_X1		Determines the encoder measurement mode: 1X, 2X, or 4X.			
	DcovCounterEnhEncoder_X2					
The options can	DcovCou	nterEnhEncoder_X4				
be combined.	DcovCou	nterEnhEncoder_LatchOnSOS	Selects start of scan . Latches the counter outputs at the beginning of every scan.			
	DcovCou	nterEnhEncoder_LatchOnZ	Selects the Encoder Z mapped signal to latch the counter outputs. This allows the user to know the exact counter value when an edge is present on another channel.			
	DcovCounterEnhEncoder_ClearOnZ_Off		Selects "clear on Z" On or Off. When On, the encoder Z is referenced to clear the counter. The counter is cleared on the rising edge of the mapped (Z) channel.			
	DcovCounterEnhEncoder_ClearOnZ_On					
	DcovCounterEnhModeMask_16Bit		Selects 16-Bit counter.			
	DcovCounterEnhModeMask_32Bit		Selects 32-Bit counter. Gating can be selected On or Off. When " On ", the counter is enabled when the mapped channel to gate the counter is high . When the mapped channel is low , the counter is disabled (but holds the count value).			
	DcovCounterEnhModeMaskGatingOff					
	DcovCounterEnhModeMaskGatingOn					

Option Type and Value Definitions ContinuedDagOptionType						
WaveBook/516 and WBK12/13 Options						
Option Type (optionType)	Description	Option Value (optionValue)	Description			
DcotPga516LowPassMode	Turn on or bypass the Low Pass Filter on the WaveBook/516 PGA	DcovPga516LowPassBypass	Bypass the Low Pass Filter on the WaveBook/516 PGA			
Deotrgasiolowrassmode		DcovPga516LowPassOn	Turn on the Low Pass Filter on the WaveBook/516 PGA			
DcotWbk12FilterCutOff	Set the cutoff frequency for the WBK12 option	Values range from 400 Hz to 100KHz	Sets the cutoff frequency somewhere between specified range			
DcotWbk12FilterType	Set the Filter Type for the WBK12 option	DcovWbk12FilterElliptic	Set the filter type for the WBK12 to be Elliptic			
DCOCWDKIZFIICETIYPE		DcovWbk12FilterLinear	Set the filter type for the WBK12 to be Linear			
DcotWbk12FilterMode	Set the filter mode on the WBK12 option	DcovWbk12FilterBypass	Bypass the WBK12 Filter			
DCOLWDRIZFIILEIMOde		DcovWbk12FilterOn	Turn on the WBK12 Filter			
DcotWbk12PreFilterMode	Set the pre-filter mode for the WBK12 option.	DcovWbk12PreFilterDefault	Leave pre-filter mode on			
DCOUWDRIZPIEFIILEIMOGE		DcovWbk12PreFilterOff	Turn off pre-filter mode			
DcotWbk13FilterCutOff	Set the cutoff frequency for the WBK13 option	Values range from 400 Hz to 100KHz	Sets the cutoff frequency somewhere between specified range			
DcotWbk13FilterType	Set the Filter Type for the WBK13 option	DcovWbk13FilterElliptic	Set the filter type for the WBK13 to be Elliptic			
DCOCWDKI3FIIteriype		DcovWbk13FilterLinear	Set the filter type for the WBK13 to be Linear			
DcotWbk13FilterMode	Set the filter mode on the WBK13 option	DcovWbk13FilterBypass	Bypass the WBK13 Filter			
DCOLWDKI3F1ITERMODE		DcovWbk13FilterOn	Turn on the WBK13 Filter			
	Set the pre-filter mode for the WBK13 option.	DcovWbk13PreFilterDefault	Leave pre-filter mode on			
DcotWbk13PreFilterMode		DcovWbk13PreFilterOff	Turn off pre-filter mode			

Option Type and Value Definitions ContinuedDagOptionType			
Option Type	WBK1 Description	4 Options Option Value	Description
(optionType)	Decemption	(optionValue)	-
		DcovWbk14LowPassBypass	Bypass the Low Pass Filter for the specified WBK14 channel
DcotWbk14LowPassMode	Turn on, bypass or set to ext clock the Low Pass Filter (LPF) on a WBK14	DcovWbk14LowPassOn	Turn on the Low Pass Filter for the specified WBK14 channel
	channel	DcovWbk14LowPassExtClk	Use External Clock to control the cutoff frequency for the Low Pass Filter for the specified WBK14 channel
DcotWbk14LowPassCutOff	Set the Low Pass Filter (LPF) cutoff frequency for a WBK14 channel	1.0 to 100000.0 (Hz)	Set the Low Pass Filter frequency (when LPF set to DcovWbk14LowPassOn) For the specified WBK14 channel
	Set the High Pass Filter	DcovWbkl4HighPass0_1Hz	Set the High Pass Filter (HPF) frequency to 0.1 Hz for the specified WBK14 channel
DcotWbk14HighPassCutOff	(HPF) cutoff frequency for a WBK14 channel	DcovWbk14HighPass10Hz	Set the High Pass Filter (HPF) frequency to 10.0 Hz for the specified WBK14 channel
		DcovWbk14CurrentSrcOff	Turn off the current source for the specified WBK14 channel
DcotWbk14CurrentSrc	Set the current source for the WBK14 channel	DcovWbk14CurrentSrc2mA	Set the current source to 2mA for the specified WBK14 channel
		DcovWbkl4CurrentSrc4mA	Set the current source to 4mA for the specified WBK14 channel
DcotWbk14PreFilterMode	Set the pre-filter mode for	DcovWbk14PreFilterDefault	Use the built-in default 65 dB pre-filter stage
DCOLWDRIFFIEFIILEIMOUE	a WBK14 channel	DcovWbk12PreFilterOff	Turn the pre-filter off
DmotWbk14ExcSrcWaveform	Set the Excitation Source	DmovWbk14ExcSrcRandom	Use random signal waveform generation for the excitation waveform
Duotwoki 4Excol Cwavel of ut	waveform for a WBK14	DmovWbkl4ExcSrcSine	Use Sine wave signal waveform generation for the excitation waveform
DmotWbk14ExcSrcFreq	Set the Excitation Source frequency for a WBK14	1.0 to 550000.0 (Hz)	Sets the excitation source waveform frequency
DmotWbk14ExcSrcAmplitude	Set the Excitation Source amplitude for a WBK14	0.0 to 5.0 (Volts)	Sets the excitation source waveform amplitude
DmotWbk14ExcSrcOffset	Set the Excitation Source offset for a WBK14	-5.0 to 5.0 (Volts)	Sets the excitation source signal offset
DmotWbk14ExcSrcApply		0.0 to 5.0 (Volts)	Apply excitation voltage
		DcovWbk14FilterRange_1K	Sets the filter range for the WBK14 channel to 1Khz
		DcovWbk14FilterRange_5K	Sets the filter range for the WBK14 channel to 5Khz
DcotWbk14ExtFilterRange		DcovWbk14FilterRange_10K	Sets the filter range for the WBK14 channel to 10Khz
		DcovWbk14FilterRange_15K	Sets the filter range for the WBK14 channel to 15Khz
		DcovWbk14FilterRange_20K	Sets the filter range for the WBK14 channel to 20Khz

		K16 Options	1
Option Type (optionType)	Description	Option Value (optionValue)	Description
	Selects the type of bridge	DcovWbk16ApplyFull	Selects Full Bridge
DcotWbk16Bridge	configuration. For diagrams and related text, refer to the WaveBook User's Manual (p/n 481-0901).	DcovWbk16ApplyHalfQtrPos	Selects Half-Bridge/ Quarter-Bridge
	Used to select the shunt	DcovWbk16ApplyNone	normal reading, no shunt
	value for internal shunt- calibration resistors. The shunt resistors are not pre-	DcovWbk16Apply120	Apply 120 ohm shunt – B Shunts are not pre-installed.
DcotWbk16ShuntCal	installed.	DcovWbk16Apply350	Apply 350 ohm shunt – D Shunts are not pre-installed.
	In regard to shunt setup, refer to the WaveBook User's Manual	DcovWbk16Apply1K	Apply 1 K ohm shunt – F Shunts are not pre-installed.
	(p/n 481-0901).	DcovWbk16AutoZero	apply short (0 ohm)
DcotWbk16InDiag	Sets input diagnostics.	DcovWbk16ReadNone	Sets diagnostics for reading input signals.
DcotWbk160ffsetDac	Sets the Dac Offset relative to input.	0.0 to 4095.0 See Note 2.	See Note 2 at end of WBK16 Table.
	Used to select normal	DcovWbk16Normal	Normal signal polarity.
DcotWbk16Inv	signal polarity, or to invert the polarity, if desired.	DcovWbk16Inverted	Inverts signal polarity.
	Used to bypass the single-	DcovWbk16FltBypass Bypasses the filter	Bypasses the filter
	pole low-pass filter	DcovWbk16Flt10Hz	Enables 10 Hz filter
DcotWbk16FilterType	(LPF), or set it to one of two cut-off frequencies: 10 Hz to reduce high frequency noise; or 1K Hz for anti-aliasing & slight noise rejection while maintaining moderate bandwidth.	DcovWbk16Flt1Khz	Enables 1 K Hz filter
	Sets the input coupling.	DcovWbk16CoupleDC	Selects DC Coupling
DcotWbk16Couple	Use AC coupling to reject unwanted DC offsets. Use DC coupling when both AC and DC components are to be presented to the comparator as input.	DcovWbk16CoupleAC	Selects AC Coupling
	Used to bypass or to	DcovWbk16Bypassed	Bypasses SSH function
DcotWbk16Sample	enable the WBK16's Simultaneous Sample and Hold (SSH) function.	DcovWbk16Ssh	Enables the SSH function (for WBK16 only)
		DcovWbk16Exc0_0	Selects 0.0 V
		DcovWbk16Exc0_5	Selects 0.5 V
actuble1 (Used to select the	DcovWbk16Exc1_0	Selects 1.0 V
DcotWbk16ExcDac	calibrated excitation DAC values for WBK16.	DcovWbk16Exc2_0	Selects 2.0 V
		DcovWbk16Exc5_0	Selects 5.0 V
		DcovWbk16Exc10_0	Selects 10.0 V
	Provides gain definitions	DcovWbk16X1	Sets IAG gain to: x 1
	for the WBK16 IAG (Instrumentation	DcovWbk16X10	Sets IAG gain to: x 10
DcotWbk16IAG	Amplifier Gain).	DcovWbk16X100	Sets IAG gain to: x 100
	See Note 1 regarding Voltage Out & Total Gain.	DcovWbk16X1000	Sets IAG gain to: x 1000

Option Type and Value Definitions ContinuedDagOptionType				
WBK16 Options				
Option Type (optionType)	Description	Option Value (optionValue)	Description	
		DcovWbk16X1_00	Sets PGA gain to: x 1.00	
		DcovWbk16X1_28	Sets PGA gain to: x 1.28	
		DcovWbk16X1_65	Sets PGA gain to: x 1.65	
		DcovWbk16X2_11	Sets PGA gain to: x 2.11	
	Provides gain definitions for the WBK16 PGA	DcovWbk16X2_71	Sets PGA gain to: x 2.71	
	(Programmable Gain	DcovWbk16X3_48	Sets PGA gain to: x 3.48	
DcotWbk16PGA		DcovWbk16X4_47	Sets PGA gain to: x 4.47	
		DcovWbk16X5_74	Sets PGA gain to: x 5.74	
		DcovWbk16X7_37	Sets PGA gain to: x 7.37	
	, onago out to rotar outin	DcovWbk16X9_46	Sets PGA gain to: x 9.46	
		DcovWbk16X12_14	Sets PGA gain to: x 12.14	
		DcovWbk16X15_58	Sets PGA gain to: x 15.58	
		DcovWbk16X20_00	Sets PGA gain to: x 20.00	
DmotWbk16Immediate	Contains option value for applying Excitation Voltage.	DmovWbk16ExcSrcApply	Applies the excitation source voltage that is defined by DcotWbk16ExcDac.	

Note 1: $V_{OUT} = [(V_{IN} x IAG) + DacOffset_{SCALED}] x PGA$

Where: V_{OUT} is Voltage Out, and V_{IN} is Voltage In

Note 2: Software Function for Dac Offset (Bridge Offset)

This note pertains to the DcotWbk160ffsetDac option type that is discussed in the preceding table. The Dac Offset, also referred to as *bridge offset*, can be set to values in the range of -3.0 volts to +3.0 volts, divided by the gain of the Instrumentation Amplifier (IAG). To do so, the following conversion is used:

Offset Value = [(Offset Voltage) x IAG x 682.5] + 2047.5

Where: Offset Value is a number in the range of 0.0 to 4095.0.

Example:

In this example we will determine the Offset Value; i.e., an integer in the range of 0 to 4095 that will give us a desired offset of 0.25 volts. We will make use of the following considerations. Actual applications will vary, accordingly.

- the Instrumentation Amplifier Gain (IAG) is set to x 10, i.e., DCOVWbk16X10
- the desired Offset Voltage is 0.25 volts

Using the above equation we find that our offset value is 3754. The solution follows.

(0.25 x 10 x 682.5) + 2047.5 = 3754

Correlation of Offset Range with Instrumentation Amplifier Gain		
IAG Value Allowable Range for Offset Voltage		
x 1	± 3.0 volts	
x 10	± 0.3 volts	
x 100	± 0.03 volts	
x 1000	± 0.003 volts	

Opt	F1 0	itions ContinuedDaqOptionTyp	pe	
WBK17 Options				
Option Type (optionType)	Description	Option Value (optionValue)	Description	
DcotWbk17Level	Sets the comparator threshold level.	- 12.5 to +12.5 Volts	Threshold level.	
Sets the input coupling. Use AC coupling to reject	DcovWbk17CoupleOff	Turns coupling "off."		
DcotWbk17Coupling	unwanted DC offsets. Use DC coupling when both AC and DC	DcovWbk17CoupleAC	Sets coupling to AC.	
	components are to be presented to the comparator as input.	DcovWbk17CoupleDC	Sets coupling to DC.	
	Used to bypass the	DcovWbk17FltBypass	Bypasses the analog filter.	
	single-pole low-pass filter (LPF), or set it to one of	DcovWbk17Flt100KHz	Sets cut-off frequency to 100 kHz.	
DcotWbk17FilterType	three cut-off frequencies: 100kHz, 20kHz, or	DcovWbk17Flt20KHz	Sets cut-off frequency to 20 kHz.	
	30 Hz. Used to reject low-level noise.	DcovWbk17Flt30Hz	Sets cut-off frequency to 30 Hz.	
		30 Hz. DcovWbk17Debounce500ns 500 ns. DcovWbk17Debounce1500ns 1500 ns. DcovWbk17Debounce3500ns 3500 ns.	500 ns.	
	Used to hypers the	DcovWbk17Debounce1500ns	1500 ns.	
	Used to bypass the debounce mode, or to set	DcovWbk17Debounce3500ns	3500 ns.	
	a channel's comparator	DcovWbk17Debounce7500ns	7500 ns.	
	output to one of 16 debounce times.	DcovWbk17Debounce15500ns	15500 ns.	
	Debounce is used to	DcovWbk17Debounce31500ns	31500 ns.	
	eliminate switch-induced transients typically	DcovWbk17Debounce63500ns	63500 ns.	
	associated with electro-	DcovWbk17Debounce127500ns	127500 ns.	
DcotWbk17DebounceTime	mechanical devices including relays,	DcovWbk17Debounce100µs	100 μs.	
	proximity switches, and	DcovWbk17Debounce300µs	300 µs.	
	encoders.	DcovWbk17Debounce700µs	700 μs.	
	Note that there are two	DcovWbk17Debounce1500µs	1500 μs.	
	debounce modes, "After Stable" and "Before	DcovWbk17Debounce3100µs	3100 µs.	
	Stable." See	DcovWbk17Debounce6300µs	6300 μs.	
	DcotWbk17Debounce	DcovWbk17Debounce12700µs	12700 µs.	
	Trigger.	DcovWbk17Debounce25500µs	25500 µs.	
		DcovWbk17DebounceNone	Selects debounce bypass.	
	Determines whether the	DcovWbk17RisingEdge	Selects the "Rising Edge" for detection.	
DcotWbk17Edge	rising edge or falling edge is to be detected.	DcovWbk17FallingEdge	Selects the "Falling Edge" for detection.	
	Determines the ticksize.	DcovWbk17Tick20ns	Sets ticksize to 20 ns.	
	The ticksize is the fundamental unit of time	DcovWbk17Tick200ns	Sets ticksize to 200 ns.	
DcotWbk17TickSize	for period, pulsewidth,	DcovWbk17Tick2000ns	Sets ticksize to 2 µs.	
	and timing measurements.	DcovWbk17Tick20000ns	Sets ticksize to 20 µs.	

Optio	•••	nitions ContinuedDaqOptionTyp	e
Option Type (optionType)	Description	Options (continued) Option Value (optionValue)	Description
DcotWbk17DebounceTrigger	Sets the mode of the debounce module to Trigger After Stable, or to Trigger Before Stable.	DcovWbk17TriggerAfterStable	Selects the "Trigger After Stable" mode. This mode rejects glitches and only passes state transitions after a specified period of stability (the debounce time). This mode is used with electro- mechanical devices like encoders and mechanical switches to reject switch bounce and disturbances due to a vibrating encoder that is not otherwise moving. The debounce time should be set short enough to accept the desired input pulse but longer than the period of the undesired disturbance.
	to Ingger Before Stable.	DcovWbk17TriggerBeforeStable	Selects the Trigger Before Stable mode. Use this mode when the input signal has groups of glitches and each group is to be counted as one. The trigger before stable mode will recognize and count the first glitch within a group but reject the subsequent glitches within the group if the debounce time is set accordingly. In this case the debounce time should be set to encompass one entire group of glitches.
	Used to select the mapped channel to be	DcovWbk17Map_Channel_1 DcovWbk17Map_Channel_2 DcovWbk17Map_Channel_3	Selects the mapped channel to be one of the counter input channels. There are 8 post-debounce
	either one of the counter input channels or one of the detection output signals. A mapped channel is one of 16 signals that	DcovWbk17Map_Channel_4 DcovWbk17Map_Channel_5 DcovWbk17Map_Channel_6 DcovWbk17Map_Channel_7 DcovWbk17Map_Channel_8	 channel input signals that can be individually selected as mapped channels. These are indicated as Channel_1 for Channel 1, Channel_2 for Channel 2, etc.
DcotWbk17MapChannel	can get multiplexed into a channel's counter module. The mapped channel can participate	DcovWbk17Map_Detect_1 DcovWbk17Map_Detect_2	Selects the mapped channel to be one of the detection output signals.
	channel can participate with the channel's input signal by gating the counter, clearing the counter, etc. The 16 possible choices for the mapped channel are the 8 input signals (post debounce) and the 8 detection signals.	DcovWbk17Map_Detect_3 DcovWbk17Map_Detect_4 DcovWbk17Map_Detect_5 DcovWbk17Map_Detect_6 DcovWbk17Map_Detect_7 DcovWbk17Map_Detect_8	Each input channel has an associated detection signal, e.g., Detect_1 for Channel 1. The detection signal will go active high when the channel's counter value meets the detection module's setpoint criteria (programmed into the pattern detection module).

Optio	••	nitions ContinuedDaqOptionType Options (continued)	
Option Type (optionType)	Description	Option Value (optionValue)	Description
DcotWbk17DetectClear	Clears or resets a	DcovWbk17DetClr_Chan	Clears a channel.
DCOLWDKI/DelectClear	channel or a unit (all channels).	DcovWbk17DetClr_All	Clears all channels.
		DcovWbk17DetCtrl_Off	Detection setting "off."
		DcovWbk17DetCtrl_Below_Low	Sets count for "below low limit."
		DcovWbk17DetCtrl_Above_High	Sets count for "above high limit."
	Sets the type of comparison to be made.	DcovWbk17DetCtrl_Outside_Range	Sets count for "Outside of range."
DcotWbk17DetectControl	Can also be used to set	DcovWbk17DetCtrl_Inside_Range	Sets for "Inside the range."
Decembri /Dececcontrol	the detection to "off" or to update the digital output.	DcovWbk17DetCtrl_Dig_Eq_Dig	Sets for "Digital comp setpoint equals the Digital Output value." Digcomp equals the value present on the digital
		DcovWbk17DetCtrl_Update_Dig	output port. Updates digital output port, using DigMask and DigOut.
DcotWbk17DetectLowLimit	Sets low limit.	0 to 65535	
DcotWbk17DetectHighLimit	Sets high limit.	0 to 65535	Select value from
DcotWbk17DetectDigComp	Sets DigComp	0 to 255	applicable range.
DcotWbk17DetectDigMask	Sets DigMask	0 to 255	-
DcotWbk17DetectDigOut	Sets Digital Port Output	0 to 255	-
DcotWbk17MeasurementMode	Enumeration with Bit-Masking	DcovWbk17Mode_OFF	Set Measurement Modes to "Off."
		DcovWbk17Mode_Counter	Counter Mode
		DcovWbk17Counter_Totalize	Totalize Mode – The counter counts up and rolls over on the 16-bit or 32-bit boundary.
DcotWbk17MeasurementMode (continued)	Enumeration with Bit-Masking. The options can be	DcovWbk17Counter_ClearOnRead	Clear On Read Mode - The counter is cleared at the beginning of every scan; and the final value of the counter [the value just before it was cleared] is latched and returned to the Wavebook/516.
combined.	DcovWbk17Counter_RollOver	Rollover Mode - The counter continues to count upward, rolling over on the 16-bit or 32-bit boundary.	
		DcovWbk17Counter_StopOnTop	Stop at the Top Mode - The counter will stop at the top of its count. The top of the count is FFFF for the 16-bit option and FFFFFFFF for the 32-bit option.

Option Type and Value Definitions ContinuedDaqOptionType					
	WBK17 Options (continued)				
Option Type (optionType)	Description	Option Value (optionValue)	Description		
		DcovWbk17Counter_LatchOnSOS	Selects start of scan . Latches the counter outputs at the beginning of every scan.		
		DcovWbk17Counter_LatchOnMap	Selects the mapped signal to latch the counter outputs. This allows the user to know the exact counter value when an edge is present on another channel.		
	Enumeration with	DcovWbk17Counter_DecrementOff	Determines whether the		
DcotWbk17MeasurementMode	Bit-Masking.	DcovWbk17Counter_DecrementOn	counter decrement option is "off" or "on."		
(continued)	The options can be	DcovWbk17Counter_CountChan	Selects channel for count.		
	combined.	DcovWbk17Counter_CountMap	Selects mapped channel for count.		
		DcovWbk17ModeMask_16Bit	Selects 16-Bit counter.		
		DcovWbk17ModeMask_32Bit	Selects 32-Bit counter.		
		DcovWbk17ModeMaskGatingOff DcovWbk17ModeMaskGatingOn	Gating can be selected On or Off. When " On ", the counter is enabled when the mapped channel to gate the counter is high . When the mapped channel is low , the counter is disabled (but holds the count value).		
		DcovWbk17Mode_Period	Period Mode		
		DcovWbk17Period_X1 DcovWbk17Period_X10 DcovWbk17Period_X100 DcovWbk17Period_X1000	Used to select the number of periods to time, per measurement. Choices are: 1, 10, 100, or 1000		
		DcovWbk17Period_MeasChan	Selects to measure input channel's period.		
DcotWbk17MeasurementMode	Enumeration with Bit-Masking.	DcovWbk17Period_MeasMap	Selects to measure the mapped channel's period.		
(continued)	The options can be	DcovWbk17ModeMask_16Bit	Selects 16-Bit counter.		
	combined.	DcovWbk17ModeMask_32Bit	Selects 32-Bit counter.		
		DcovWbk17ModeMaskGatingOff DcovWbk17ModeMaskGatingOn	Gating can be selected On or Off. When " On ", the counter is enabled when the mapped channel to gate the counter is high . When the mapped channel is low , the counter is disabled (but holds the count value).		

WBK17 Description Enumeration with Bit-Masking.	Options (continued) Option Value (optionValue) DcovWbk17Mode_Pulsewidth DcotWbk17PulseWidth_MeasChan DcotWbk17PulseWidth_MeasMap	Description Pulsewidth Mode Selects to measure input channel's pulsewidth.
	DcotWbk17PulseWidth_MeasChan	Selects to measure input channel's pulsewidth.
		Pulsewidth Mode Selects to measure input channel's pulsewidth. Selects to measure the mapped channel's pulsewidth. Selects 16-Bit counter. Selects 32-Bit counter. Gating can be selected On or Off. When "On", the counter is enabled when the mapped channel to gate the counter is high. When the counter is disabled (but holds the count value). Timing Mode Selects 16-Bit counter. Selects 32-Bit counter. Gating can be selected On or Off. When "On", the counter is disabled (but holds the count value). Timing Mode Selects 16-Bit counter. Selects 32-Bit counter. Gating can be selected On or Off. When "On", the counter is enabled when the mapped channel to gate the counter is high. When the mapped channel is low, the counter is disabled (but holds the count value). Encoder Mode Determines the encoder measurement mode: 1X, </td
	DcotWbk17PulseWidth_MeasMap	
		mapped channel's
The options can be	DcovWbk17ModeMask_16Bit	Selects 16-Bit counter.
The options can be	DcovWbk17ModeMask_32Bit	Selects 32-Bit counter.
combined.	DcovWbk17ModeMaskGatingOff DcovWbk17ModeMaskGatingOn	counter is enabled when the mapped channel to gate the counter is high . When the mapped channel is low , the counter is disabled (but
	DcovWbk17Mode_Timing	Timing Mode
Enumeration with Bit-Masking. The options can be combined.	DcovWbk17ModeMask_16Bit	Selects 16-Bit counter.
	DcovWbk17ModeMask_32Bit	Selects 32-Bit counter.
	DcovWbk17ModeMaskGatingOff DcovWbk17ModeMaskGatingOn	counter is enabled when the mapped channel to gate the counter is high . When the mapped channel is low , the counter is disabled (but
	DcovWbk17Mode_Encoder	Encoder Mode
	DcovWbk17Encoder_1X	Determines the encoder
	DcovWbk17Encoder_2X	
	DcovWbk17Encoder_4X	2X, or 4X.
	DcovWbk17Encoder_LatchOnSOS	Latches the counter outputs at the beginning of every
DcotWbk17MeasurementMode (continued) Enumeration with Bit-Masking. The options can be combined.	DcovWbk17Encoder_LatchOnZ	mapped signal to latch the counter outputs. This allows the user to know the exact counter value when an edge
	DcovWbk17Encoder_ClearOnZ_Off	Selects "clear on Z" On or Off. When On, the encoder Z is referenced to clear the
	DcovWbk17Encoder_ClearOnZ_On	counter. The counter is cleared on the rising edge of the mapped (Z) channel.
	DcovWbk17ModeMask 16Bit	Selects 16-Bit counter.
	_	Selects 32-Bit counter.
	Bit-Masking. The options can be combined. Enumeration with Bit-Masking.	Enumeration with Bit-Masking. The options can be combined. Enumeration with Bit-Masking. The options can be combined. BCovWbk17Encoder_LatchOnZ DcovWbk17Encoder_LatchOnZ DcovWbk17Encoder_ClearOnZ_Off

Option Type and Value Definitions ContinuedDagOptionType				
	WBK17 Options (continued)			
Option Type (optionType)	Description	Option Value (optionValue)	Description	
DcotWbk17MeasurementMode (continued)	Enumeration with Bit-Masking. The options can be combined.	DcovWbk17ModeMaskGatingOff DcovWbk17ModeMaskGatingOn	Gating can be selected On or Off. When " On ", the counter is enabled when the mapped channel to gate the counter is high . When the mapped channel is low , the counter is disabled (but holds the count value).	

Option	••	ions ContinuedDaqOptionTyp 18 Options	
Option Type (optionType)	Description	Option Value (optionValue)	Description
DcotWbk18LowPassMode	Configure Low Pass input filter for Bypass, 2-Pole or 8-Pole on a	DcovWbk18LowPassBypass	Bypass the Low Pass Filter for the specified WBK18 Channel
	WBK18	DcovWbk18LowPass_2_Pole	Set the Low Pass Filter to 2- Pole roll off for the specified channel
		DcovWbk18LowPass_8_Pole	Sets the Low Pass Filter to 8- Pole roll off for the specified channel
DcotWbk18LowPassCutOff	Sets the Low Pass input filter cutoff frequency for 2 pole or 8 pole	DcovWbk18LPF_Cutoff_10Hz	Sets the Low Pass input filter to 10Hz for the specified channel
	mode	DcovWbk18LPF_Cutoff_20Hz	Sets the Low Pass input filter to 20Hz for the specified channel
		DcovWbk18LPF_Cutoff_50Hz	Sets the Low Pass input filter to 50Hz for the specified channel
		DcovWbk18LPF_Cutoff_100Hz	Sets the Low Pass input filter to 100Hz for the specified channel
		DcovWbk18LPF_Cutoff_200Hz	Sets the Low Pass input filter to 200Hz for the specified channel
		DcovWbk18LPF_Cutoff_500Hz	Sets the Low Pass input filter to 500Hz for the specified channel
		DcovWbk18LPF_Cutoff_1000Hz	Sets the Low Pass input filter to 1000Hz for the specified channel
		DcovWbk18LPF_Cutoff_2000Hz	Sets the Low Pass input filter to 2000Hz for the specified channel
		DcovWbk18LPF_Cutoff_5000Hz	Sets the Low Pass input filter to 5000Hz for the specified channel
		DcovWbk18LPF_Cutoff_10000Hz	Sets the Low Pass input filter to 10000Hz for the specified channel
		DcovWbk18LPF_Cutoff_20000Hz	Sets the Low Pass input filter to 20000Hz for the specified channel
		DcovWbk18LPF_Cutoff_50000Hz	Sets the Low Pass input filter to 50000Hz for the specified channel

*		ions ContinuedDaqOptionType Dtions (continued)	
Option Type (optionType)	Description	Option Value (optionValue)	Description
DcotWbk18HighPassCutOff	Configures the High Pass input filter for	DcovWbk18HighPass0_1Hz	Sets the High Pass input filter to 0.1Hz
	0.1Hz, 10Hz or DC coupling	DcovWbk18HighPass10Hz	Sets the High Pass input filter to 10Hz
		DcovWbk18HighPassDC	Sets the High Pass input filter to DC coupling
DcotWbk18CurrentSrc	Enables/disables	DcovWbk18CurrentSrcOff	Turn current off
	channel output current to power ICP sensors – active at acquisition arming	DcovWbk18CurrentSrc4mA	Turn current on
DcotWbk18OverRangeEnable	Enables/disables	DcovWbk18OverRangeOff	Disable
	channel over-range detection for the specified channel	DcovWbk18OverRangeOn	Enable
DcotWbk18CurrentSrcImmediate	Enables/disables channel output current	DcovWbk18CurrentSrcOff	Turn current off
	to power ICP sensors – active immediately – for the specified channel	DcovWbk18CurrentSrc4mA	Turn current on
DmotWbk18OverRangeLimit	Configure over-range detection condition	1.0 to 100.0 (% of range)	Sets the level for the over- range circuitry to detect an over-range condition – applies to all channels
DmotWbk18OverRangeEnable	Enables/disable over- range detection for all eight channels	0 to 255 (bit mask)	Each bit represents a channel. Writing 255 enables all channels
DmotWbk18esMode	Configures the analog	DmovWbk18esSine	Continuous sine wave output
	output for continuous sine or swept sine mode	DmovWbk18esSweptSine	Sweep through pre-set frequency amplitude values
DmotWbk18esAmplitude	Set the amplitude for	DmovWbk18esAmplitude10pp	10 volts p-p
	continuous or swept modes	DmovWbk18esAmplitude5pp	5 volts p-p
		DmovWbk18esAmplitude2pp	2 volts p-p
		DmovWbk18esAmplitude1pp	1 volt p-p
		DmovWbk18esAmplitude0_5pp	0.5 volt p-p
		DmovWbk18esAmplitude0_2pp	0.2 volt p-p
		DmovWbk18esAmplitude0_1pp	0.1 volt p-p
		DmovWbk18esAmplitude0_0pp	0.0 volt p-p
DmotWbk18esFreq	Set the frequency for continuous or swept modes	1.0 to 5000 (Hz)	Specifies the output frequency
DmotWbk18esRelay	Controls the output	DmovWbk18esRelayOpen	Specify relay open
-	relay	DmovWbk18esRelayClosed	Specify relay closed
DmotWbk18esFreqCycleTime	Swept mode buffer cycle time. If total RAM segments times the duration time exceeds the cycle time then cycle time is ignored.	50 to 85699000 (microseconds)	Specify time in microseconds
DmotWbk18esFreqDurationTime	Specifies the duration a frequency will be at the output	50 to 85699000 (microseconds)	Specify time in microseconds

Option 2	Type and Value Definit	tions ContinuedDaqOptionTyp	e
WBK18 Options (continued)			
Option Type (optionType)	Description	Option Value (optionValue)	Description
DmotWbk18esImmediate	Performs an immediate action on the analog output	DmovWbk18esClearRAM	Erases all 1280 RAM segments
		DmovWbk18esWriteRAM	Increments the segment pointer and writes the current frequency, amplitude, relay position, cycle time and duration time to WBK18 RAM segment.
		DmovWbk18esStart	Start output
		DmovWbk18esStop	Disable output – no voltage
DmotWbk18esRelay	Used to reset, turn on and turn off the excitation source	DmovWbk18esRelayOpen	Open relay excitation source
		DmovWbk18esRelayClosed	Close relay excitation source
DmotWbk18esImmediate		DmovWbk18esStop	Stops excitation output
		DmovWbk18esStart	Starts excitation output
		DmovWbk18esWriteRAM	Writes Amp/Freq/Relay values to excitation source RAM
		DmovWbk18esClearRAM	Clears excitation source RAM
DbotIgnoreFirstScan	Set to On if using a	DbovIgnoreFirstScanOff	Includes first scan
	Wavebook as a Master device and a DaqLab, DaqScan or DaqBook, WBK40/41 as a slave device	DbovIgnoreFirstScanOn	Excludes first scan

Function Usage

The daqSetOption function may be used to set options or configuration settings for a device, module or channel. Generally, this function allows setting states or configuration information for a particular feature for a given device, module or channel that cannot or should not be set using normal scan configuration settings.

When configuring options which relate to module or channel configuritons, this function should be called to set the option prior to arming the acquisition (see daqAdcArm). The device should have already been opened prior to calling this function (see daqOpen) and the handle parameter indicates the device for which the option is to apply.

The flags parameter indicates if the option applies to a channel or an entire channel bank according to the module used. The flags parameter may be set to the following:

DcofChannel -- Apply option to the channel specified by the chan parameter. DcofModule -- Apply option to the entire module for which chan is located.

The optionType specifies which option to apply. See the table in the "Parameter Type Definitions" section for a complete description of valid option types.

The optionValue parameter specifies the value to set the option specified by optionType (if applicable). See the table in the "Parameter Type Definitions" section for more detailed description of the valid option values for the desired option type.

Returns

DerrNoError No error

Prototypes

C/C++

daqSetOption(DaqHandleT handle, DWORD chan, DWORD flags, DaqOptionType
optionType, FLOAT optionValue);

Visual BASIC

VBdaqSetOption&(ByVal handle&, ByVal chan&, ByVal flags&, ByVal optionType&, ByVal optionValue!)

Program References

DAQTMREX01.CPP, DBK04EX.CPP, DBK07EX.CPP

daqSetTimeout

Also See: daqWaitForEvent, daqWaitForEvents, daqAdcTransferBufData, daqAdcRdN

Format

daqSetTimeout (handle, mSecTimeout)

Purpose

daqSetTimeout sets the time-out for waiting on either a single event or multiple events.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the event time-out is to be set
mSecTimeout	DWORD	Specifies time-out (in milliseconds) for events

Parameter Values

handle: obtained from the DagOpen function

mSecTimeout: valid values range from 1 to 4,294,967,295; however, large values will cause timeout to be excessively long

Function Usage

The daqSetTimeout function can be used in conjunction with the daqWaitForEvent and daqWaitForEvents functions to specify a maximum amount of time to wait for the event(s) to be satisfied.

The mSecTimeout parameter specifies the maximum amount of time (in milliseconds) to wait for the event(s) to occur. If the event(s) do not occur within the specified time-out, the dagWaitForEvent and/or dagWaitForEvents will return.

If this function is not called, a default timeout of 10,000 milleseconds (10 seconds) will be used.

The dagSetTimeout function can be used for dagAdcRdN functions.

Returns

DerrNoError No error

Prototypes

C/C++

daqSetTimeout(DaqHandleT handle, DWORD mSecTimeout);

Visual BASIC

VBdaqSetTimeout&(ByVal handle&, ByVal mSecTimeout&)

Program References

DAQADCEX04.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP

Also See: daqAdcSetScan, daqAdcSetTrig, daqAdcSetTrigEnhanced

Format

```
daqSetTriggerEvent(handle, trigSource, trigSensitivity, channel, gainCode,
flags, channelType, level, variance, event)
```

Purpose

daqSetTriggerEvent sets an acquisition trigger start event or an acquisition stop event.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the trigger event is to be
		configured
trigSource	DaqAdcTriggerSource	Trigger source
trigSensitivity	DaqEnhTrigSensT	Trigger sense and direction
channel	DWORD	Actual channel number of the trigger channel (NOT the
		scan list location)
gainCode	DaqAdcGain	Trigger channel gain code
flags	DWORD	Trigger channel flags
channelType	DaqChannelType	Type of channel
level	FLOAT	Trigger level in expected engineering units of the
		channel type (Volts, Counts, or Deg C)
variance	FLOAT	Variance in the trigger
event	DaqTriggerEvent	Trigger event

Parameter Values

handle: obtained from the **DaqOpen** function

trigSource: see table below

trigSenseitivity: see table below

channel: valid values range from 0 to 271

gainCode: see ADC Gain Definition table for gain parameter values

flags: see ADC Flag Definition table for flags parameter values

channelType: see table below

level: valid values depend on channel type—see channelType table below

variance: valid values depend on channel type—see channelType table below

event: valid values indicate either a start trigger event (daqStartEvent) or a stop trigger event (daqStopEvent)

Parameter Type Definitions

triggerSource-(DaqAdcTriggerSource)		
Definition	Description	
DatsImmediate (Trigger event only)	Post-trigger data acquisition begins immediately upon invocation of the daqAdcArm function (no pre-trigger data acquisition is possible with this trigger source)	
DatsSoftware	Post-trigger data acquisition begins upon a software command issued by the calling application (see daqAdcSoftTrig)	
DatsAdcClock Trigger event only)	Post-trigger data acquisition begins immediately upon invocation detection of the ADC Clock pulse being driven.	
DatsGatedAdcClock Trigger event only)	Post-trigger data acquisition begins immediately upon invocation detection of the ADC Clock pulse being driven.	
DatsExternalTTL (Trigger event only)	Post-trigger data acquisition begins on the selectable edge of an external TTL signal.	
DatsHardwareAnalog (Trigger event only)	Post-trigger data acquisition begins upon a selectable criteria of the input signal (above level, below level, rising edge, etc.) Must be defined as the first channel in the channel scan group	
DatsSoftwareAnalog	Post-trigger data acquisition begins upon a selectable criteria of the input signal (above level, below level, rising edge, etc.)	
DatsDigPattern	Post-trigger data acquisition beings upon receiving a specified digital pattern on a P2 or P3 digital port.	
DatsPulse* (Trigger event only)	Post-trigger data acquisition begins upon detection of a pulse of specified duration and magnitude on an analog input channel.	
DatsCounter (P3)	Post-trigger data acquisition begins upon detection of specified counter criteria	
DatsScanCount (Stop event only)	Stop collecting post-trigger data when the specified number of post-trigger scans are completed	

triggerSensitivity-(DaqEnhTrigSensT)		
Definition	Trigger Sources	Description
DetsRisingEdge	DatsExternalTTL	Triggers when the signal goes from low to high (TTL trigger) or rises
	DatsHardwareAnalog	through a specified level (Hardware & Software Analog)
	DatsSoftwareAnalog	
	DatsEnhancedTrig	
DetsFallingEdge	DatsExternalTTL	Triggers when the signal goes from high to low (TTL trigger) or falls
	DatsHardwareAnalog	through a specified level (Hardware & Software Analog)
	DatsSoftwareAnalog	
	DatsEnhancedTrig	
DetsAboveLevel	DatsExternalTTL	Triggers when the signal is above a specified level (Hardware &
	DatsHardwareAnalog	Software Analog and Digital Trigger)
	DatsSoftwareAnalog	
	DatsEnhancedTrig	
DetsBelowLevel	DatsExternalTTL	Triggers when the signal is below a specified level (Hardware &
	DatsHardwareAnalog	Software Analog and Digital Trigger)
	DatsSoftwareAnalog	
	DatsEnhancedTrig	
DetsEQLevel	DatsSoftwareAnalog	Triggers when the signal equals a specified level (Hardware & Software
	DatsEnhancedTrig	Analog and Digital Trigger)
	DatsDigPattern	
DetsNELevel	DatsSoftwareAnalog	Triggers when the signal does not equal a specified level (Hardware &
	DatsEnhancedTrig	Software Analog and Digital Trigger)
	DatsDigPattern	
DetsWindow	DatsPulse	Triggers at a specified pulse width or height

The data ranges described in the following table represent the maximum range over which the level and variance parameters can be set for the channel type selected. The ranges for the particular channel may be actually smaller depending upon the maximum A/D range of main unit, the gain, the polarity and/or other range settings for which the actual input channel is configured.

channelType-(DaqChannelType)		
Definition	Data Representation	Valid Data Ranges (level and variance)
DaqTypeAnalogLocal	Voltage	DagBook/100 Series and /200 Series: -5.0 to +10.0 (Volts)
		DagBoards(ISA): -5.0 to +10.0 (Volts)
		DagBoard/500 Series: -10.0 to $+10.0$ (Volts)
		DaqBoard/1000 Series: -10 to +10.0 (Volts)
		DaqBoard/2000 Series: -10.0 to +10.0 (Volts)
		DaqBook/2000 Series: -10.0 to +10.0 (Volts)
		DaqLab/2000 Series: -10.0 to +10.0 (Volts)
		DaqScan/2000 Series: -10.0 to +10.0 (Volts)
		Daq PC Cards: -10.0 to +10.0 (Volts)
		WaveBook/512: -5.0 to +10.0 (Volts)
DaqTypeDigitalLocal	Digital Pattern	P2: 0 to 255 (Dec)
		P3: 0 to 65535 (Dec)
DaqTypeDigitalExp	Digital Pattern	P2: 0 to 255 (Dec)
DagTypeCounterLocal	Counter Value	P3: 0 to 65535 (Dec)
DaqTypeDBK1	Voltage	-10.0 to +10.0 (Volts)
DaqTypeDBK4	Voltage	-5.0 to +10.0 (Volts)
DaqTypeDBK7	Voltage	-5.9 to +5.0 (Volts)
DaqTypeDBK8	Voltage	-5.0 to +5.0 (Volts)
DaqTypeDBK9	Temperature (Degrees C)	-200.0 to 850.0 (Degrees C)
DaqTypeDBK12	Voltage	-5.0 to +10 (Volts)
DaqTypeDBK13	Voltage	-5.0 to +10 (Volts)
DaqTypeDBK14	Voltage	-5.0 to +5.0 (Dependent upon TC type)
DaqTypeDBK15	Voltage	-5.0 to +10 (Volts)
DaqTypeDBK16	Voltage	-5.0 to +5.0 (Volts)
DaqTypeDBK17	Voltage	-5.0 to +10.0 (Volts)
DaqTypeDBK18	Voltage	-5.0 to +10.0 (Volts)
DaqTypeDBK19	Temperature (Degrees C)	-270.0 to 1820.0 (Dependent upon TC type)
DaqTypeDBK20	Digital Pattern	0 – 255 (Dec)
DaqTypeDBK21	Digital Pattern	0 – 255 (Dec)
DaqTypeDBK22	Digital Pattern	0 - 255 (Dec)
DaqTypeDBK23	Digital Pattern	0 – 255 (Dec)
DaqTypeDBK24	Digital Pattern	0 – 255 (Dec)
DaqTypeDBK25	Digital Pattern	0 – 255 (Dec)
DaqTypeDBK42	Voltage	-5.0 to +5.0 (Volts)
DaqTypeDBK50	Voltage	-300.0 to +300.0 (Volts)
DaqTypeDBK51	Voltage	-10.0 to +10.0 (Volts)
DaqTypeDBK52	Temperature (Degrees C)	-270.0 to 1820.0 (Dependent upon TC type)
DaqTypeDBK53	Voltage	-10.0 to +10.0 (Volts)
DaqTypeDBK54	Voltage	-10.0 to +10.0 (Volts)
DaqTypeDBK56	Voltage	-10.0 to +10.0 (Volts)
DaqTypeDBK70	Voltage	0.0 to 5.0 (Volts)

Returns

DerrNoError No error

4.6-26 Dag API Command Reference

Function Usage

Defining the Trigger Channel

The channel parameter selects the trigger channel. The trigger channel must be a configured channel in the scan list (see daqAdcSetScan). The type of channel selected can be set by the channelType parameter. The channel type will be used to properly interpret the value against which the device should be triggered (see the "Setting the Trigger Level" and "Setting the Trigger Variance" sections below) in the context of the channel type selected. For instance, if the channel is an thermocouple channel then the level and variance parameters will be interpreted as values in degrees Celsius. The flags parameter defines the configured settings for the channel and should match the flags setting for the trigger channel configured using the daqAdcSetScan function. Likewise, the gainCode parameter should match the gain code setting when the channel was configured using the daqAdcSetScan function. If the same channel is in the scan multiple times, the 1st occurrence of the channel will be used as the trigger channel.

Error Checking

It is important to note that only basic error checking in done when daqSetTriggerEvent is called. Full verification against the scan list and acquisition mode will take place during the daqAdcArm function.

Selecting the Trigger Event

The event parameter selects the definition of the trigger event to be either a start trigger event (DaqStartEvent) or a stop trigger event (DaqStopEvent). The start trigger event defines the conditions under which post-trigger acquisition data collection should be initiated or triggered. Stop events are events which signal the current data acquisition process to terminate.

Setting the Trigger Source

The trigSource parameter specifies the trigger source to use as the start or stop trigger event. The start and stop trigger event sources are both programmed using selected definitions from the daqAdcTriggerSource data type. As described below, start and stop trigger event definitions may differ from device to device, so it is important to note which start and stop trigger events can be configured for your device.

Setting the Start Trigger Event Source

The start trigger event defines the conditions under which post-trigger acquisition data collection should be initiated or triggered. The start trigger event can vary in complexity from starting immediately, to starting on complex channel value definitions. See the table in the "Setting the Trigger Variance" section for a list of some valid start and stop trigger event definitions.

Setting the Stop Event Source

Stop events are events which signal the current data acquisition process to terminate. Here again, the stop event can be as simple as that of a scan count, or as complex as involving a channel value level condition. Generally, there are fewer options with stop event definitions than start event definitions. However, the DaqBook/2000 Series and DaqBoard/2000 series products do provide a rich set of stop event features based upon software channel value definitions.

Setting the Trigger Level

The level parameter is used for those trigger types who depend on an input channel comparison to detect the trigger start or stop event. The level parameter is a single precision floating point value which represents, in engineering units, the level at (or around which) the trigger event should be detected. The actual level at which the trigger event is detected depends upon trigger sensing and variability discussed later. Below is a table describing the various ranges of possible values for the level parameter based on the trigger source:

Trigger Level Settings		
Trigger/Stop Sources Meaning of level parameter (daqAdcTriggerSource)		
DatsSoftwareAnalog (P1)	Voltage or temperature (in degrees C) at which the trigger level is to be defined. Trigger detection performed in software.	
DatsHardwareAnalog (P1)	Voltage or temperature (in degrees C) at which the trigger level is to be defined. Trigger detection performed in hardware.	
DatsDigPattern (P2/P3)	Defines bit pattern for the digital channel trigger. The valid values are: 0.0 (no bits set) - 255.0 (all bits set) for 8-bit digital channel banks (P2) 0.0 (no bits set) - 65,535.0 (all bits set) for 16-bit channel banks (P3)	
DatsCounter (P3)	Pulse or Totalize counter values (0.0 – 65,535)	

DaqBooks, TempBooks, DaqBoard (ISA) and Daq PC Cards have a fixed hardware based hysteresis value, so the variance parameter is ignored for those devices when using with DatsHardwareAnalog trigger source.

Setting the Trigger Sensitivity

Some trigger sources require a trigger sensitivity setting. The triggensitivity setting is only required for trigger sources which are based upon an input signal. The trigger sensitivity normally defines the way in which a trigger event is detected based upon the characteristics of the trigger input signal. Often, it defines the way in which the trigger input signal(s) should be compared to the trigger level parameter value.

Setting the Trigger Variance

While the trigSense parameter indicates the direction of the input signal relative to the level parameter, the variance parameter specifies the degree to which the input signal can vary relative to level parameter. The variance parameter is a single-precision floating point value which represents, in engineering units, the amount that the trigger event can vary from the level parameter.

The range of trigger values defined by the variance and level parameters depends also upon the trigSensitivity setting and the type of input channel that is configured as the trigger channel. The following table describes how the the trigSource and trigSensitivity parameters influence the trigger values established by the level and variance parameters.

DatsHardwareAnalog can only be used when the trigger channel is first channel in the scan group configuration (see daqAdcSetScan)

Trigger Start/Stop Source	Trigger	I FIGORE STATUSTON UTIONA
Source		Trigger Start/Stop Criteria
	Sensitivities	
Analog (P1)	DetsRisingEdge	Triggers/Stops when: <i>signal value</i> < (level-variance)
DatsHardwareAnalog		Then, signal value > level
	DetsFallingEdge	Triggers/Stops when: <i>signal value</i> > (level+variance)
		Then, signal value < level
	DetsAboveLevel	Triggers/Stops when: <i>signal value</i> > (level)
	DetsBelowLevel	Triggers/Stops when: <i>signal value</i> < (level)
Analog (P1)	DetsRisingEdge	Triggers/Stops when: <i>signal value</i> < (level-variance)
DatsSoftwareAnalog		Then, <i>signal value</i> > level
	DetsFallingEdge	Triggers/Stops when: <i>signal value</i> > (level+variance)
		Then, <i>signal value</i> < level
	DetsAboveLevel	Triggers/Stops when: <i>signal value</i> > (level)
	DetsBelowLevel	Triggers/Stops when: <i>signal value</i> < (level)
	DetsEQLevel	Triggers/Stops when: (level-variance) < signal value
		<(level+variance)
	DetsNELevel	Triggers/Stops when: <i>signal value</i> < (level-variance)
		or signal value > (level+variance)
Digital (P2/P3)	DetsAboveLevel	Triggers/Stops when:
DatsDigPattern		Dig channel bank > (level AND (bitwise) variance)
	DetsBelowLevel	Triggers/Stops when:
		Dig channel bank < (level AND (bitwise) variance)
	DetsEQLevel	Triggers/Stops when:
		Dig channel bank = (level AND (bitwise) variance)
	DetsNELevel	Triggers/Stops when:
		Dig channel bank != (level AND (bitwise) variance)
	DetsRisingEdge	Triggers/Stops when:
		counter channel < (level-variance) Then,
		counter channel > level
Counter (P3)	DetsFallingEdge	Triggers/Stops when: <i>counter channel</i> > (level+variance)
DatsCounter		Then, <i>counter channel</i> < level
	DetsAboveLevel	Triggers/Stops when: <i>Counter channel</i> > (level-variance)
	DetsBelowLevel	Triggers/Stops when: <i>Counter channel</i> < (level+variance)
	DetsEQLevel	Triggers/Stops when:
		(level-variance) < counter channel < (level+variance)
	DetsNELevel	Triggers/Stops when: Counter channel < (level-variance)
		Or counter channel > (level+variance)

Prototypes

C/C++

daqSetTriggerEvent(DaqHandleT handle, DaqAdcTriggerSource trigSource, DaqEnhTrigSensT trigSensitivity, DWORD channel, DaqAdcGain gainCode, DWORD flags, DaqChannelType channelType, FLOAT level, FLOAT variance, DaqTriggerEvent event)

Visual BASIC

VBdaqSetTriggerEvent&(ByVal handle&, ByVal trigSource&, ByVal trigSensitivity&, ByVal channel&, ByVal gainCode&, ByVal flags&, ByVal channelType&, ByVal level!, ByVal variance!, ByVal trigEvent&)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DBK04EX.CPP, DBK07EX.CPP, DBK08EX.CPP, DBK09EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP, DBK50EX.CPP, DBK51EX.CPP, DBK52EX.CPP, DBK53_54EX.CPP

daqTest

Format

daqTest(handle, command, count, cmdAvailable, result)

Purpose

dagTest tests a device for specific functionality.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the test is to be performed
command	DaqTestCommand	Specifies the type of test to be run
count	DWORD	Optional parameter which specifies the length of the test
cmdAvailable	PBOOL	Pointer to a return boolean indicating the availability of the test for
		the device
result	PDWORD	Pointer to the test result field

Parameter Values

handle: obtained from the **DaqOpen** function

command: see table below

count: valid values range from 1 to 4,294,967,295; however, large values will result in excessively long tests cmdAvailable: pointer to a boolean value; values are either true ($\neq 0$) or false (=0) result: a pointer to a value ranging from 0 to 4,294,967,295

Parameter Type Definitions

command-(DaqTestCommand)		
Definition	Description	
DtstBaseAddressValid	Test to determine if communications at currently configured base address are valid.	
DtstInterruptLevelValid	Test to determine if conflicts exist at the currently configured IRQ.	
DtstDmaChannelValid	Test to determine if conflicts exist at the currently configured DMA channel. This command definition verifies DMA via available Input and Output speed tests, i.e., DtstAdcFifoInputSpeed, DtstDacFifoOutputSpeed, DtstIOInputSpeed, and DtstIOOutputSpeed.	
DtstAdcFifoInputSpeed	Test to determine max speed for analog data transfer to computer memory.	
DtstDacFifoOutputSpeed	Test to determine max speed for analog data transfer from computer memory.	
DtstIOInputSpeed	Test to determine max rate for digital data transfer to computer memory.	
DtstIOOutputSpeed	Test to determine max rate for digital data transfer from computer memory.	
DtstFifoAddrDataBusValid	WaveBook Only : WBK30 communication check (use DtstFifoMemCellValid instead)	
DtstFifoMemCellValid	WaveBook Only : MegaFIFO (WBK30) memory test.	
DtstHardwareCompatibility	WaveBook Only : Verifies the DSP Boot Code revision level. 1 = PASS, 0 = FAIL.	
DtstFirmwareCompatibility	WaveBook Only: Verifies the FPGA revision level. $1 = PASS$, $0 = FAIL$.	
DtstExpansionCompatibility	WaveBook Only: Verifies that the connected WBK modules are compatible with the main unit. $1 = PASS, 0 = FAIL.$	
DtstExpUpgradeCompatibility	WaveBook Only: Verifies that the main unit Firmware is compatible with all connected WBK modules. 1 = PASS, 0 = FAIL.	

Returns

DerrNoError No Error

Function Usage

Test types performed by the dagTest function vary; test results are based on the type of test requested. Tests can only be performed on valid, opened devices. If there are problems with the test, be sure to check that the device is properly configured, that the device is powered-on, and that it is properly connected.

The command parameter specifies the test to run. There are two main types of tests: resource and performance. The cmdAvailable parameter is a pointer to a Boolean value that indicates whether or not the specified test is available for the device.

The count parameter can be used to indicate the duration or length of the test. For instance, a resource test will be run count times; and if any one iteration of the test fails, it will indicate an overall failure of the test. For a performance test, the count parameter will indicate the number of times to run the test, and the test result will be an average of all the tests performed.

Resource Tests

Resource tests are pass/fail and are useful in determining if the device has the appropriate resources to function efficiently. If one or more of the resource tests fail, the **Daq Configuration** utility (found in the operating system's Control Panel) may be used to change the resource settings related to the problem. Valid resource test types are defined as follows:

DtsBaseAddressValid - This test will indicate if there is a problem communicating with the device at its currently specified base address. A non-zero in the result parameter will indicate a failed condition. For DaqBook/2000 Series, DaqBoard/2000 Series and cPCI DaqBoard/2000c Series this command definition returns the bus and slot code of the hardware as "slot + (bus * 256)."

DtsInterruptLevelValid - This test is not available for DaqBook/2000 Series, DaqBoard/2000 Series or cPCI DaqBoard/2000c Series boards. For other devices the test will indicate if there is a problem with performing acquisitions using interrupts. A non-zero in the result parameter will indicate a failed condition. If this is the case, the interrupts may not be properly configured (if the device is a DaqBook, the LPT interrupts may not be enabled on the system) or an interrupt conflict exists with another device.

DtsDmaChannelValid - (DaqBoards only) This test will indicate if there is a problem with performing acquisitions through DMA transfers with the currently configured DMA channel for the device. A non-zero in the result parameter will indicate a failed condition. If this is the case, DMA may not be enabled for the device or a conflict may exist with another device. For DaqBook/2000 Series, DaqBoard/2000 Series and cPCI DaqBoard/2000c Series, this command definition verifies DMA via available Input and Output speed tests, i.e., DtstAdcFifoInputSpeed, DtstDacFifoOutputSpeed, DtstIOInputSpeed, and DtstIOOutputSpeed. See the following *Performance Tests* section for more information.

Performance Tests

Performance tests measure the speed at which certain operations can be performed on the device. In general, the performance test results indicate the maximum rate at which the operation can be performed on the device. The valid performance test types are defined as follows:

DtsAdcFifoInputSpeed - This test will determine the maximum rate at which analog input can be acquired and transferred to system memory. Analog input performance results will be returned in the result parameter with units of samples/second. (Note 1).

DtsDacFifoOutputSpeed - (DaqBoards only) This test will determine the maximum rate at which analog output data can be read from system memory and transferred to the device's DAC FIFO. Analog output performance results will be returned in the result parameter with units of samples/second. (Note 1).

DtsIOInputSpeed – This test will determine the maximum rate at which digital input can be read from the device's DIO port and transferred to system memory. Digital input performance results will be returned in the result parameter with units of bytes/second. (Note 1).

DtsIOOutputSpeed - This test will determine the maximum rate at which digital output can be read from system memory and output to the device's DIO port. Digital output performance results will be returned in the result parameter with units of bytes/second. (Note 1).

Note 1: For DaqBook/2000 Series, DaqBoard/2000 Series and cPCI DaqBoard/2000c Series the results are limited to 200 kHz and are only available on the correct hardware.

Prototypes

C/C++

```
daqTest(DaqHandleT handle, DaqTestCommand command, DWORD count, PBOOL
cmdAvailable, PDWORD result);
```

Visual BASIC

```
VBdaqTest&(ByVal handle&, ByVal command&, ByVal count&, cmdAvailable&,
result&)
```

Program References

daqWaitForEvent

Also See: daqWaitForEvents, daqSetTimeout

Format

daqWaitForEvent(handle, event)

Purpose

daqWaitForEvent waits on a specific event to occur on the specified device.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle of the device for which to wait of the specified event
event	DaqTransferEvent	Specifies the event to wait on

Parameter Values

handle: obtained from the DagOpen function
event: see table below

Parameter Type Definitions

daqEvent-(DaqTransferEvent)		
Definition (dagEvent) Description		
DteAdcData	Data is present in the acquisition buffer	
DteAdcDone	Acquisition data transfer operation is complete	

Returns

DerrNoError No Error

Function Usage

The daqWaitForEvent function will not return until the specified event (event) has occurred or the wait has timed out— whichever comes first. The event time-out can be set with the function.

Note: The default timeout is 5 seconds.

Prototypes

C/C++

daqWaitForEvent(DaqHandleT handle, DaqTransferEvent event);

Visual BASIC

VBdaqWaitForEvent&(ByVal handle&, ByVal daqEvent&)

Program References

DAQADCEX04.CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQEX.FRM (VB)

Format

```
daqWaitForEvents(handles, events, eventCount, eventSet, waitMode)
```

Purpose

daqWaitForEvents waits on specific device events to occur on the specified devices.

Parameter Summary

Parameter	Туре	Description
handles	DaqHandleT	Pointer to an array of handles which represent the list of device
		on which to wait for the events
daqEvents	DaqTransferEvent	Pointer to an array of events which represents the list of events
		to wait on
eventCount	DWORD	Number of defined events to wait on
eventSet	BOOL	Pointer to an array of booleans indicating if the events have
		been satisfied
waitMode	DaqWaitMode	Specifies the mode for the wait

Parameter Values

handles: obtained from the DaqOpen function
events: see table below
eventCount: valid values range from 1 to 16
eventSet: valid values are either true ($\neq 0$) or false (=0)
waitMode: see table below

Parameter Type Definitions

daqEvents-(DaqTransferEvent)		
Definition	Description	
DteAdcData	Data is present in the acquisition buffer	
DteAdcDone	Acquisition data transfer operation is complete	

Definition	Description	
DwmNoWait	Do not wait. Return immediately with the current state of all events	
DwmWaitForAny	Wait until any event condition has been satisfied then return current states for all events	
DwmWaitForAll	Wait until all event conditions have been satisfied then return current states for all events	

Returns

DerrNoError No Error

Function Usage

This function will wait on the specified events and will return based upon the criteria selected with the waitMode parameter. A time-out for all events can be specified using the function. Events to wait on are specified by passing an array of event definitions in the events parameter. The number of events is specified with the eventCount parameter.

Note: The default timeout is 10 seconds.

Prototypes

C/C++

daqWaitForEvents(DaqHandleT *handles, DaqTransferEvent *events, DWORD
eventCount, BOOL *eventSet, DaqWaitMode waitMode);

Visual BASIC

VBdaqWaitForEvents&(handles&(), events&(), ByVal eventCount&, eventSet&(), ByVal waitMode&)

Program References

daqZeroConvert

Also See: daqZeroSetup, daqZeroSetupConvert daqAutoZeroCompensate

Format

daqZeroConvert (counts, scans)

Purpose

daqZeroConvert compensates one or more scans according to the previously called daqZeroSetup function.

Parameter Summary

Parameter	Туре	Description
counts	PWORD	Raw data from one or more scans
scans	DWORD	Number of scans of raw data in the counts array

Parameter Values

counts: a pointer to an array ranging from 0 to 65,535 scans: valid values range from 1 to 4,295,967,295; however, memory limitiations may apply

Returns

DerrZCInvParam Invalid parameter value DerrNoError No error

For more details on error messages refer to the Daq Error Table.

Function Usage

This function will modify the array of data passed to it.

Prototypes

C/C++

daqZeroConvert(PWORD counts, DWORD scans);

Visual BASIC

VBdaqZeroConvert&(counts%, ByVal scans&)

Program References

daqZeroSetup

Also See: daqZeroConvert, daqZeroSetupConvert, daqAutoZeroCompensate

Format

daqZeroSetup (nscan, zeroPos, readingsPos, nReadings)

Purpose

daqZeroSetup defines which channels will be zeroed within a scan, the location of the shorted channel, the size of the scan, and the number of readings to zero.

Parameter Summary

Parameter	Туре	Description
nscan	DWORD	Number of readings in a single scan
zeroPos	DWORD	Position of the zero reading within the scan
readingsPos	DWORD	Position of the readings to be zeroed within the scan
nReadings	DWORD	Number of readings immediately following the zero reading that are sampled
		at the same gain as the zero reading

Parameter Values

nscan: valid values range from 1 to 272 zeroPos: valid values range from 1 to 272 readingsPos: valid values range from 1 to 272 nReadings: valid values range from 1 to 270

Returns

DerrZCInvParam	Invalid parameter value
DerrNoError	No error

For more details on error messages refer to the Daq Error Table.

Function Usage

This function does not do the actual conversion. A non-zero return value indicates an invalid parameter error.

Prototypes

C/C++

daqZeroSetup(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD nReadings);

Visual BASIC

VBdaqZeroSetup&(ByVal nscan&, ByVal zeroPos&, ByVal readingsPos&, ByVal nReadings&)

Program References

daqZeroSetupConvert

Also See: daqZeroSetup, daqZeroConvert, daqAutoZeroCompensate

Format

daqZeroSetupConvert (nscan, zerroPos, readingsPos, nReadings, counts, scans)

Purpose

daqZeroSetupConvert performs both the setup and convert steps with one call.

Parameter Summary

Parameter	Туре	Description
nscan	DWORD	Number of readings in a single scan
zeroPos	DWORD	Position of the zero reading within the scan
readingsPos	DWORD	Position of the readings to be zeroed within the scan
nReadings	DWORD	Number of readings immediately following the zero reading that are sampled at the same gain as the zero reading
counts	DWORD	Raw data from one or more scans
scans	DWORD	Number of scans of raw data in the counts array

Parameter Values

nscan: valid values range from 1 to 272
zeroPos: valid values range from 1 to 272
readingsPos: valid values range from 1 to 272
nReadings: valid values range from 1 to 270
counts: a pointer to an array ranging from 0 to 65,535
scans: valid values range from 1 to 4,295,967,295; however, memory limitiations may apply

Returns

DerrZCInvParam Invalid parameter value DerrNoError No error

For more details on error messages refer to the Daq Error Table.

Function Usage

This is useful when the zero compensation needs to be performed multiple times because data was read from channels at different gains or from different boards.

Prototypes

C/C++

daqZeroSetupConvert(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD
nReadings, PWORD counts, DWORD scans);

Visual BASIC

```
VBdaqZeroSetupConvert&(ByVal nscan&, ByVal zeroPos&, ByVal readingsPos&,
ByVal nReadings&, counts%(), ByVal scans&)
```

Program References

API Error Codes - dagError

Error Name	Code # hex - dec	Description
DerrNoError	00h - 0	No error – No errors encountered in performing action.
DerrBadChannel	01h - 1	Specified LPT channel was out-of-range (Error Code Obsolete)
DerrNotOnLine	02h - 2	Requested device is not online - The device cannot be detected.
		Corrective Actions: If using a Book product:
		Check power on the device.
		 Check that cabling is IEEE-1284 compliant and is securely connected to the
		device and the computer. (if applicable).
		 If using a plug in PCI or ISA parallel port, check to ensure that the plug in board
		is properly installed and firmly seated in the bus slot.
		• If using a PCMCIA (PC Card) parallel port card make sure that the card is firmly and completely inserted into the socket controller. Also make sure that the operating system properly recognizes the card as a parallel port device and that its interrupt setting has no conflicts.
		 Check that the device is properly configured in the Daq Configuration Applet in the Control Panel. Make sure that the device is connected to the parallel port for which it is configured.
		If using a Daq PC card product:
		 Check to ensure that the card is properly and fully inserted into the socket. Check to make sure that the operating system recognizes the card in the Device Manager of the Control Panel; and make sure that its interrupt setting has no conflicts. Check to ensure that the socket in which the card is installed corresponds to
		the socket configured in the Daq Configuration Applet in the Control Panel If using an ISA-board:
		 Check to ensure that the product is firmly seated into the ISA bus slot. Check the Base Address and Interrupt settings on the board match the settings in the Daq Configuration Applet in the Control Panel
		If using a PCI-board:
		Check to ensure that the product is firmly seated into the PCI bus slot.
		Check that the operating system properly recognizes the device in the Device
		Manager of the Control Panel.
		Check that the Serial Number on the device matches that reported by the Daq Configuration Applet in the Control Panel.
		 Check that the Bus and Slot number reported in the Daq Configuration Applet in the Control Panel match the physical bus and slot number in which the device is installed.
DerrNoDaqbook	03h - 3	Reserved for future use
DerrBadAddress	04h - 4	Reserved for future use
DerrFIFOFull	05h - 5	FIFO Full detected, possible data corruption. Input FIFO on device has oveflowed – data loss or data corruption is possible under these conditions. Corrective Actions:
		Reduce scan rate or channel count.
		If Book product select a parallel port protocol capable of higher throughput
Descende d'Desce	0.01	speeds.
DerrBadDma	06h - 6	DMA is currently being used (DaqBoard(ISA) only) by another device Corrective Actions:
		Change DMA channel for the DagBoard in the Dag configuration Applet in the
		system Control Panel to another setting not used by other devices.
DerrBadInterrupt	07h - 7	Bad or illegal INTERRUPT level specified for device - Interrupt could not be acquired.
		 Corrective Actions: Check system for devices configured with the same interrupt or interrupt
		conflicts.
		 If using DaqBook check system to make sure that the interrupt is enabled on the LPT port connected to DaqBook (BIOS and system settings configuration in the Control Panel)
DerrDmaBusy	08h - 8	DMA is currently being used (DaqBoard(ISA) only)
		Corrective Actions:
		Change DMA channel for the DaqBoard in the Daq configuration Applet in the
		system Control Panel to another setting not used by other devices.
DerrInvChan	10h - 16	Invalid analog input channel - Channel number selected cannot be included in the scan group because it is an invalid channel. Corrective Actions:
		Check channel setting to ensure that it is correlated to a real physical channel
		on the main unit or expansion device.
		Check that the channel is being configured on the desired device. Device Handle should correspond to the device for which the channel is being configured

API Error Codes (Cont.) – dagError

Error Name	Code # hex - dec	Description
DerrInvCount	11h - 17	Invalid count parameter – An invalid number was specified. This can be related to
Derrinvedund		number of scans requested, number of channels in a scan, number of updates or
		scans in a buffer, number of scans requested to transfer and so on.
		Corrective Actions:
		Check any API's where any channel, scan or buffer allocation is performed.
		Check API's that request transferred or updated data status requests.
		Check that passed count values are valid.
DerrInvTrigSource	12h - 18	Invalid trigger source parameter Trigger source selected is not a valid trigger source
		for the given device.
		Corrective Actions:
		Check that the trigger source selected is a valid trigger source (see trigger
		source table)
		Check device documentation to see if the device is capable of using the trigger
DerrInvLevel	13h - 19	source. Invalid trigger level parameter – Trigger level programmed is invalid.
Derrinviever	1511 - 15	Corrective Actions:
		Check that the trigger value programmed is appropriate for the input range of
		the selected device and channel.
DerrInvGain	14h - 20	Invalid channel gain parameter - Gain level programmed is invalid.
		Corrective Actions:
		Check that the device and channel for the specified gain are capable of utilizing
		the gain programmed. (see gain tables)
DerrInvDacVal	15h - 21	Invalid DAC output parameter
		Corrective Actions:
		Make sure that the programmed DAC values are within the specified range of
		the DAC output for the device and channel.
DerrInvExpCard	16h - 22	Invalid expansion card parameter – parameter cannot be used with specified
		expansion card or channel: Corrective Actions:
DerrInvPort	17h - 23	Do not use the illegal parameter Invalid port parameter – Invalid DIO port reference.
Derrinvrort	1/11 - 25	Corrective Actions:
		 Check that the port number programmed is valid DIO port for the device or DIO
		expansion card.
DerrInvChip	18h - 24	Invalid chip parameter (no ref)
DerrInvDigVal	19h - 25	Invalid digital output parameter – Digital output value not valid for output to digital
_		port
		Corrective Actions:
		Inspect all daqIO output parameters for inappropriate values for the given DIO
-		port and device.
DerrInvBitNum	1Ah - 26	Invalid bit number parameter – Bit number specified is not valid for specified DIO
		port. Corrective Actions:
DerrInvClock	1Bh - 27	Check that bit number programmed is valid for specified DIO port and channel Invalid clock parameter – Input or Output clock parameter or combination of clock
Derrinveroex	1011 27	parameters programmed is not valid.
		Corrective Actions:
		Check clock parameter values
		Check clock parameter flags
DerrInvTod	1Ch - 28	Invalid time-of-day parameter - Time of Day programmed on the 9513 chip is invalid
		Corrective Actions:
		Check Daq9513TimeOfDay (tod) parameter used with daq9513SetMasterMode
	-	API.
DerrInvCtrNum	1Dh - 29	Invalid counter number – The counter number specified is not a valid counter
		number for the 9513 device.
		Corrective Actions:
DerrInvCntSource	1Eh - 30	 Use a counter number between 1 and 5 for the 9513. Invalid counter source parameter –The 9513 Counter Source parameter is not valid.
Derrinvenebource	1611 - 30	Corrective Actions:
		Select a defined Counter Source (see 9513 Counter Source tables)
DerrInvCtrCmd	1Fh - 31	Invalid counter command parameter – The 9513 Counter Command specified is not
()		valid.
		Corrective Actions:
		Specify a valid 9513 Counter Command. (see 9513 counter command tables)
DerrInvGateCtrl	20h - 32	Invalid counter gate parameter – The specified gate is not valid when programming
	-	counter mode.
		Corrective Actions:
		Specify a valid 9513 Gate Control value. (see 9513 counter gate tables)
	1	· · · · · · · · · · · · · · · · · · ·

API Error Codes (Cont.) – dagError

Eman Man		
Error Name	Code # hex - dec	Description
DerrInvOutputCtrl	21h - 33	Invalid output control parameter – Bad Output Control specified when programming the 9513 for timer output.
		Corrective Actions:
		Specify a valid 9513 Gate Control value.
DerrInvInterval	22h - 34	Invalid interval parameter – Bad interval specified when programming the 9513 for frequency measurement over the interval.
		 Corrective Actions: Specify an interval for the 9513 that can properly be used to measure a
		frequency over.
DerrTypeConflict	23h - 35	Obsolete Error Code
DerrMultBackXfer	24h - 36	A second background transfer was requested – Another acquisition transfer has been requested when one is already active. Only one transfer can be active on a device at any given time.
		 Corrective Actions: Wait for the first transfer to complete then start the new transfer
		Disarm (daqDisarm) the first transfer so that a new transfer can be started.
DerrInvDiv	25h - 37	Invalid Fout divisor – foutDiv parameter for the daq9513SetMasterMode API is out of range (>15)
		Corrective Actions:
		 Set the foutDiv parameter <15
Temperature Conversion Erro		
Error Name	Code # hex - dec	Description
DerrTCE_TYPE	26h - 38	TC type out-of-range – An undefined TC type value has been specified. Corrective Actions:
	051 00	Check that a valid TC type has been specified (see TC Types Table)
DerrTCE_TRANGE	27h - 39	Temperature out-of-CJC-range – Temperature at CJC is outside of the specified operating range of the CJC. Invalid CJC readings and corresponding temperature channel readings may be inaccurate due to CJC out of range.
		Corrective Actions:
		 Operate device and/or expansion units under temperature conditions which are not outside the specified range of the CJC.
DerrTCE_VRANGE	28h - 40	Voltage out-of-TC-range – The voltage level of the TC input on the channel is outside of the specified range of the TC configured for the channel. Temperature readings may be inaccurate due to voltage levels being outside of the specified range of the TC. Corrective Actions:
		 Check to ensure that the correct TC type is physically connected to the specified channel and is connected securely.
		 Check to ensure that the physical channel has been configured to the correct TC value in the application.
		 Check that the temperature level at the TC juncture is within the operating range of the TC.
DerrTCE_PARAM	29h - 41	Unspecified parameter value error – bad parameter was passed to daqTCSetup and/or daqTCConvert
		Corrective Actions:
		 Check to ensure that the daqTCSetup and daqTCConvert have been called with the proper parameters for the operation.
		Check to ensure that daqTCSetup and daqTCConvert have not returned an
DerrTCE_NOSETUP	2Ah - 42	error DagTCConvert called before dagTCSetup - TC setup has not been properly
		initialized – possibly due to order of precedence for these API's has not been performed correctly.
		Corrective Actions:
		 Check to ensure that the daqTCSetup is called before daqTCConvert. Check to ensure that the daqTCSetup has been called with the proper
		 parameters for the operation. Check to ensure that daqTCSetup has not returned an error.
Device Capabilities	<u> </u>	
Error Name	Code # hex - dec	Description
DerrNotCapable	2Bh - 43	Device is incapable of function – The device is not capable of performing the
		operation or function specified. Corrective Actions:
		Refer to product documentation to ensure that the device is capable of
		performing the specified operation or function.
		 Check to ensure that the application is referencing the proper handle for the device and not using a bandle append for another device.
		device and not using a handle opened for another device.

API Error Codes (Cont.) - dagError

Scanned Input Transfers					
Error Name	Code # hex - dec	Description			
DerrOverrun	2Ch - 44	 A buffer overrun occurred – The acquisition transfer buffer located in PC memory has overrun. When this occurs data loss and/or corruption is possible. Corrective Actions: Make sure that the application has enough time to return to 			
		 processing/removing data from the buffer before it overruns. If using a Driver allocated buffer make sure that daqAdcTransferGetStat is 			
		called often to manage the transfer.Increase the buffer size so that more processing/removing latencies can be			
		tolerated without overrunning.			
		Decrease the acquisition rate and/or acquisition channel scan count.			
Zero and Cal Conversion Erro					
Error Name	Code # hex - dec	Description			
DerrZCInvParam	2Dh - 45	 Unspecified parameter value error – An invalid parameter was specified during daqZeroSetup or daqZeroConvert. Corrective Actions: Check the parameter settings for daqZeroSetup and daqZeroConvert. 			
DerrZCNoSetup	2Eh - 46	Zero compensation has not been properly setup. daqConvert WAS called before daqSetup or daqZeroSetup was not properly			
		performed Corrective Actions:			
		 Make sure that daqZeroSetup was called before daqZeroConvert. Make sure that daqZeroSetup was called with the proper parameter definitions and settings. 			
		Check any error codes returned from daqZeroSetup.			
DerrInvCalFile	2Fh - 47	Cannot open the specified cal file – the calibration file specified by the calfile parameter when executing the daqReadCalFile API could not be opened.			
		 Corrective Actions: Make sure that the calibration file name and path have been properly defined in the calibration property. 			
		 in the <i>calfile</i> string parameter. Make sure that the application has the appropriate system permissions to read the file. This can be an issue under Windows/NT/2000 systems. 			
Environmental Errors					
Error Name	Code # hex - dec	Description			
DerrMemLock	30h - 48	Cannot lock allocated memory from operating system. This is a rare error condition and is an operating system resource issue.			
		 Corrective Actions: Shut down any applications that may have PC memory intense operations. Increase system memory size. 			
DerrMemHandle	31h - 49	Cannot get a memory handle from operating system This is a rare error condition and is an operating system resource issue. Corrective Actions:			
		 Shut down any applications which may have PC memory intense operations. 			
Pre-trigger acquisition Errors					
Error Name	Code # hex - dec	Description			
DerrNoPreTActive	32h - 50	No pre-trigger configured – pre-trigger operation could not be performed since no pre-trigger has been defined. Corrective Actions:			
		Setup the acquisition for pre-trigger operation.			
	DAC FIFO Errors (DaqBoard only)				
Error Name	Code # hex - dec	Description			
DerrInvDacChan	33h - 51	DAC channel does not exist. The DAC channel specified does not exist for the specified device. Channel number selected cannot be programmed because it is an invalid DAC channel. Corrective Actions:			
		 Check channel setting to ensure that it is correlated to a real physical DAC channel on the main unit or expansion device. 			
		 Check that the channel is being configured on the desired device. Device Handle should correspond to the device for which the channel is being configured 			

API Error Codes (Cont.) - dagError

Error Name	Code # hex - dec	Description
DerrInvDacParam	34h - 52	DAC parameter is invalid – A parameter passed to one of the DaqDac API's was invalid.
DerrInvBuf	35h - 53	 Buffer points to NULL or buffer size is zero when in User Buffer mode—The buffer passed by the application is un-allocated or has a bad pointer address. Corrective Actions: Properly allocate the memory pointed to by the buffer address. Check to ensure that the pointer to the buffer is properly passed to the API.
DerrMemAlloc	36h - 54	 Could not allocate the needed memory – Memory could not be allocated by the driver. Corrective Actions: Shut down other applications that may be utilizing PC system memory. Free any unneeded dynamically allocated memory used by the application. Increase PC system memory.
DerrUpdateRate	37h - 55	 Could not achieve the specified update rate – could not program the unit to scan or update at the requested rate. In most cases the rate will automatically be set to the nearest achievable rate. Corrective Actions: Lower the rate requested – normally, the rate requested is not achievable due to the rate being to high for the unit. Decrease channel count – the aggregate rate can be increased by reducing the number of channels to scan. If using a DaqBoard/2000 Series board the rate can be increased by ensuring that Compatibility Mode (100Khz) is disabled.
DerrInvDacWave	38h - 56	 Could not start waveforms because of missing or invalid parameters One or more of the waveform parameters is incorrect. This error will occur upon daqDacWaveArm and could indicate that one or more waveform parameters is not set properly. Corrective Actions: Check parameters for API's like daqDacSetOutputMode and all the appropriate daqDaqWave API's called to ensure that each parameter for each API is configured or set properly.
DerrInvBackDac	39h - 57	 Could not start waveforms with background transfers – DAC waveform output transfer already active. While multiple DAC [and P3 DIO] channels can be updated concurrently during a transfer – no more than one transfer may be active at any given time for a single main unit device. Corrective Actions: Wait for the first transfer to complete then start the new transfer Disarm (daqDisarm) the first transfer so that a new transfer can be started.
DerrInvPredWave	3Ah - 58	 Predefined waveform not supported. Waveform type passed to daqDacWaveSetPredefWave is not supported. Corrective Actions: Check WaveForm Type parameter in daqDacWaveSetPredefWave to ensure that value represents a valid waveform type definition defined by the DaqDacWaveType enumeration.
RTD Conversion Errors		
Error Name DerrRtdValue	Code # hex - dec 3Bh - 59	Description RTD Value out-of-range – Error code generated if RTD value is outside of the maximum 1k range. This error code can be generated by the daqCvtRtdSetup API and indicates that the passed <i>rtdValue</i> parameter is out of range. Corrective Actions: • Inspect the <i>rtdValue</i> parameter for the daqCvtRtdSetup API for proper values.
DerrRtdNoSetup	3Ch - 60	 No setup. This error can occur if the daqCvtRtdConvert API is called before the daqCvtRtdSetup API. The error indicates that there is no setup information from which a conversion can be performed. Corrective Actions: Make sure that daqCvtRtdSetup API is called before the daqCvtRtdConvert API. Make sure that the prior call to daqCvtRtdSetup returns without error.
DerrRtdArraySize DerrRtdParam	3Dh - 61 3Eh - 62	Obsolete Error Code Incorrect RTD parameter – This error code is generated if a bad parameter was passed to the daqCvtRtdSetup API. The error code can be generated if either the <i>nScan</i> or <i>nRtd</i> parameters are zero. Corrective Actions: • Check the <i>nScan</i> and <i>nRtd</i> parameters of the daqCvtRtdSetup API for inappropriate settings.

API Error Codes (Cont.) – dagError

Channel Bank/Option Errors				
Error Name	Code # hex - dec	Description		
DerrInvBankType	3Fh - 63	 Invalid bank-type specified. This error code is returned from daqAdcExpSetChanOption and daqAdcExpSetBank if the channel type passed is either undefined or inappropriate for the bank. Corrective Actions: Check the <i>chanType</i> parameter for the daqAdcExpSetBank API and the optionType parameter for the daqAdcExpSetChanOption API 		
DerrBankBoundary	40h - 64	Simultaneous writes to DBK cards in different banks not allowed.		
Error Name	Code # hex - dec	Description		
DerrInvFreq	41h - 65	 Description Invalid scan frequency specified. Could not achieve the specified input scan frequency – could not program the unit to scan or update at the requested rate. In most cases the scan rate will automatically be set to the nearest achievable rate. Corrective Actions: Lower the rate requested – normally, the rate requested is not achievable due to the rate being too high for the unit. Decrease channel count – the aggregate rate can be increased by reducing the number of channels to scan. If using a DaqBoard/2000 Series board the rate can be increased by ensuring 		
		that Compatibility Mode (100Khz) is disabled.		
DerrNoDaq DerrInvOptionType	42h - 66 43h - 67	 Daq/112/216 not found (obsolete error code) Invalid option-type parameter - An invalid option type has been specified to the daqSetOption or daqAdcExpSetModuleOption API's. The <i>optionType</i> parameter needs to be a valid value supported by the DaqOptionType definitions. Corrective Actions: Check that the <i>optionType</i> parameter specified is a defined DaqOptionType. Check documentation for your device to determine if the device is capable of setting the specified option. 		
DerrInvOptionValue	44h - 68	 Invalid option-value parameter - An invalid option value has been specified to the daqSetOption or daqAdcExpSetModuleOption API's. The <i>optionValue</i> parameter needs to be valid for the associated <i>optionType</i> parameter specified. The <i>optionValue</i> parameter is a single precision floating point number that represents the value to be set for the option. The most common occurrence of this error is due to a value being passed that is outside the minimum and maximum allowable settings for the optionType parameter specified is the desired option to set. Check that the <i>optionType</i> parameter specified is the desired option to set. Check that the value being passed does not exceed the minimum or maximum allowable settings for the option specified. Check documentation for your device to determine if the device is capable of setting the specified option. 		
DerrTooManyHandles	60h - 96	No more handles available to open. Too many open sessions are active. Many daqOpen API's have been issued without closing enough sessions (daqClose). There are no more handles available. Corrective Actions: • Close one or more devices (daqClose) so that a handle can become available.		
DerrInvLockMask	61h - 97	Error code reserved for future use		
DerrAlreadyLocked	62h - 98	Error code reserved for future use		
DerrAcqArmed	63h - 99	 Operation not available while an acquisition is armed. The operation must be performed when there are no current acquisitions active or pending. Corrective Actions: Wait until the acquisition terminates normally Terminate the acquisition with daqDisarm. 		
DerrParamConflict	64h - 100	Each parameter is valid, but the combination is invalid.		
DerrInvMode DerrInvOpenMode	65h - 101 66h - 102	Invalid acquisition/wait/dac mode Invalid file-open mode – The file open mode <i>openMode</i> (DaqAdcOpenMode) specified in the daqAdcSetDiskFile is invalid. Corrective Action: Check that the value passed for the <i>openMode</i> parameter is a valid DaqAdcOpenMode type.		

Error Name	Code # hex - dec	Description
DerrFileOpenError	67h - 103	 Cannot open the specified file – the file specified by the <i>filename</i> parameter in the daqAdcSetDiskFile or the daqDacWaveSetDiskFile APIs could not be opened. Corrective Actions: Make sure that the file name and path have been properly defined in the
		 <i>filename</i> string parameter. Make sure that the application has the appropriate system permissions to read/open the file. This can be an issue, especially under Windows/NT/2000 systems.
DerrFileWriteError	68h - 104	 Unable to write file. The file specified by the daqAdcSetDiskFile API command could not be written or pre-written. Corrective Actions: Check that the application has called daqAdcSetDiskFile API prior to arming the acquisition (daqAdcArm). Check the return codes from daqAdcSetDiskFile API to ensure that the file was opened properly. Make sure that the application has the appropriate system permissions to write the file. This can be an issue, especially under Windows/NT/2000
		 systems. Lack of adequate space on the target drive could cause a failure to write acquired data during the acquisition or the pre-write operation (if requested). Make sure that there is enough space on the target drive and path to write the entirety of the acquisition.
DerrFileReadError	69h - 105	 Unable to read file. The file specified by the daqDacWaveSetDiskFile API command could not be read. Corrective Actions: Check that the application has called daqDacWaveSetDiskFile API prior to arming waveform output (daqDacWaveArm). Check the return codes from daqDacWaveSetDiskFile API to ensure that the file was opened properly. Make sure that the application has the appropriate system permissions to read the file. This can be an issue, especially under Windows/NT/2000 systems.
DerrInvClockSource	6Ah - 106	 Invalid clock source selected – The clock source for the input or output operation is not properly set for the device. The <i>clockSource</i> parameter (set in the daqAdcSetClockSource or daqDacWaveSetClockSource APIs is not set to a valid clock source for the given device. Corrective Actions: If performing a clocked input operation with daqAdcSetClockSource make sure that the <i>clockSource</i> selected is a valid clock source type (DaqAdcClockSource) for the given device. If performing a clocked output operation with daqDacWaveSetClockSource make sure make sure that the <i>clockSource</i> for the given device.
DerrInvEvent	6Bh - 107	Invalid transfer event. The events specified by the <i>events</i> parameter in the daqWaitForEvents or daqWaitForEvent API's was not a valid transfer event type (DaqTransferEvent). Corrective Action: Check the <i>events</i> parameter to ensure that it is a valid DaqTransferEvent event type.
DerrTimeout	6Ch - 108	 Time-out on wait – The wait on a single event or wait on multiple events timed-out. The event(s) specified by the daqWaitForEvents or daqWaitForEvent API's did not occur before the time-out for the events expired. The time-out for the event(s) is set via the daqSetTimeout API and is based in ms. Corrective Actions: If the event(s) are expected to occur within a given finite period that can be determined then use the daqSetTimeout API to set the maximum time to wait for the event(s) to occur. If the event(s) cannot be guaranteed to occur within a finite period then set the
		time-out to be infinite by setting the parameter <i>mSecTimeou</i> t=0 in the daqSetTimeout API.
DerrInitFailure	6Dh - 109	Unexpected result occurred while initializing the hardware. This error is a general failure indicating that the driver cannot properly communicate and/or initialize the device. Corrective Action: Follow the procedures set forth in DerrNotOnline error code for your particular device to make sure that the device is properly powered, connected and configured.

Error Name	Code # hex - dec	Description
DerrBufTooSmall	6Eh - 110	Buffer specified is too small for the requested operation. This is a general purpose
Deriburioosmaii	0511 - 110	error code for operations that require a minimum buffer size. This error code is
		device and operation specific.
		Corrective Action:
		Refer to device documentation for specific buffer size requirements for the
D T	(Th 111	operation and device.
DerrInvType	6Fh - 111	Invalid Port/Channel type – This error indicates that an invalid request has been
		made to perform an operation on a port or channel which is not capable of
		performing the operation.
		Corrective Operation:
		Check the port/channel number and type to determine if the operation is
		appropriate for that channel/port.
DerrArraySize	70h - 112	Used as a catch all for arrays not large enough. Returned if the operation cannot be
		performed because the array is too small. This error code can be generated when
		calling daqCvtLinearConvert when the number of (scans x nReadings) > nValues
		when using moving average or when (<i>nReadings</i> > <i>nValues</i> when using block
		averaging.
		Corrective Actions:
		Check array size definitions and parameters
		 If using daqCvtLinearConvert check that the nReadings are properly defined
		and that daqCvtLinearSetup has been called prior to daqCvtLinearConvert.
		Also make sure that scans, nReadings and nValues are properly set for the
		averaging mode selected.
DerrBadAlias	71h - 113	Invalid Alias Name – The device alias name does not exist or is corrupt. The name
		supplied or its associated device configuration is not properly stored in the operating
		system registry. This is normally encountered when trying to open the
		device(daqOpen) using the string defined by daqName or get the device properties
		(daqDevicePropsT). This problem is generally due to the device either not being
		configured at all or a typo in the name of the device.
		Corrective Actions:
		Run the Dag Configuration Control Panel Applet. Check to see that the device
		appears in the device list.
		 If the device does not appear in the device list then Click <add device=""> and</add>
		follow instructions for configuring the device.
		 If the device does appear in the list double-check spelling and other readable
		characters such as><)(. Remember that the device alias names are case
		dependent so that the string used should match exactly as it appears in the
		device list in the Daq Configuration Applet.
DerrInvCommand	72h - 114	Invalid test command – This error occurs when calling the dagTest API with an
Derrinnee	/	invalid or undefined test. The <i>command</i> parameter is not a valid DagTestCommand
		type.
		Corrective Action:
		Check the command parameter of the daqTest API to ensure that its value
		represents a valid DaqTestCommand type.
DerrInvHandle	73h - 115	Invalid device handle. The handle passed to the DaqX API is not a valid handle.
Derrinvhandre	/311 - 115	
		The handle is created by calling the daqOpen API with the appropriately defined
		device name.
		Corrective Actions:
		 Make sure that daqOpen for the device has been invoked before calling any headle based ABI's for the device
		handle based API's for the device.
		 Check the returned handle value from daqOpen. If the handle is < 0 then the bandle is invalid in disation that the during approximated with the dark lange
		handle is invalid indicating that the device associated with the daqName
		parameter could not be successfully opened. (See DerrBadAlias for more
		details)
		Check that the device has not been inadvertently closed (daqClose) prior to
_		calling a handle based API.
DerrNoTransferActive	74h - 116	Transfer not active – An operation that requires an input or output transfer to be
		active was called when no transfer was currently active. This normally occurs if
		daqAdcTransferBufData is called without a transfer currently being active.
		Corrective Action:
		Make sure that daqAdcTransferStart API has been called and the transfer is
		currently active or was active before calling daqAdcTransferBufData.
DerrNoAcqActive	75h - 117	Acquisition not active - An operation that requires an acquisition to be active was
		called when no acquisition was currently active.
DerrInvOpstr	76h - 118	Invalid operation string used for enhanced triggering (WaveBook only)
DerrDspCommFailure	77h - 119	Device with DSP failed communication (WaveBook only)
DerrEepromCommFailure	78h - 120	Device with EEPROM failed communication (WaveBook only)

Error Namo	Codo # hox - doc	Description
Error Name DerrInvEnhTrig	Code # hex - dec 79h - 121	Description
Derrinvennirig	/9n - 121	Device using enhanced trigger detected invalid trigger type – The <i>triggerSources</i> array parameter of the daqAdcSetTrigEnhanced API contained an invalid enhanced
		trigger source type (DaqAdcTriggerSource) for the device.
		Corrective Actions:
		 Make sure that all trigger sources passed in the triggerSources array parameter
		are valid enhanced trigger types defined by DaqAdcTriggerSource types.
		 Triggering capabilities vary from device to device. Make sure that the device is
		capable of performing the trigger source as it has been defined.
DerrInvCalConstant	7Ah - 122	User calibration constant out of range
DerrInvErrorCode	7Bh - 123	Invalid error code – Invalid/Undefined error code encountered when errorNum
		parameter contains an undefined error code when calling daqFormatError.
		Corrective Action:
		Make sure that the error code number passed represents a defined error code
DerrInvAdcRange	7Ch - 124	Invalid analog input voltage range parameter – Indicates that an invalid adcRange
		parameter was passed. A number of APIs use the <i>adcRange</i> parameter that has
		the type of DaqAdcRangeT. This error indicates that at least one of these API's was passed an invalid range parameter.
		Corrective Action:
		Check all API's that pass a parameter of type DaqAdcRangeT. Make sure that
		all are passing a valid range of the type DaqAdcRangeT.
DerrInvCalTableType	7Dh - 125	Invalid calibration table type – An invalid calibration table type has been specified
	-	when using the daqCal API's. The <i>tableType</i> parameter does not specify a valid
		table type (DaqCalTableTypeT) for specified device.
		Corrective Actions:
		Inspect all daqCal API's for invalid or undefined tableType parameters. Each
		tableType parameter needs to take on values defined by DaqCalTableTypeT.
		 Check documentation for your device to make sure that the table type
		requested is valid for your device.
DerrInvCalInput	7Eh - 126	Invalid calibration input signal selection – The calibration input signal selection was
		invalid. The <i>input</i> parameter did not represent a valid calibration input selection
		setting defined by DaqCalInputT when calling the daqCalSelectInputSignal or daqConfCalConstants API's
		Corrective Actions:
		 Inspect the daqCalSelectInputSignal and the daqConfCalConstants API's to
		ensure that only valid DaqCallnputT types are passed to the <i>input</i> parameter.
		Check documentation for your device to make sure that the
		dagCalSelectInputSignal and the dagConfCalConstants API's are valid for your
		device.
DerrInvRawDataFormat	7Fh - 127	Invalid raw-data format selection - Indicates an invalid raw data type selected if the
		flags settings in daqSetTriggerEvent indicate an invalid raw type for the trigger
		channel. This will be the case if the trigger channel is digital and the flags indicate
		Signed raw data. This error may also occur if setting the <i>rawFormat</i> in the
		daqAdcSetDataFormat to a type not defined (DaqAdcRawDataFormatT)
		Corrective Actions:
		 If using the daqSetTriggerEvent API and setting the trigger channel to be digital channel then set the <i>flags</i> parameter to use Unsigned raw data.
		 If using the daqAdcSetDataFormat API then make sure that the value
		passed in the rawFormat parameter is a valid type defined by
		DagAdcRawDataFormatT
DerrNotImplemented	80h - 128	Feature/function not implemented yet – The requested feature or function is not yet
		implemented. No corrective action available.
DerrInvDioDeviceType	81h - 129	Invalid digital I/O device type – An invalid Digital I/O device type was passed to a
		daqIO API. The devType parameter for a digital IO API is not properly defined as
		a DaqlODeviceType type.
		Corrective Action:
		Inspect all daqIO API's and digital I/O API's that use the <i>devType</i>
DorrTayBogtDataBorrat	82h - 130	parameter for values that are not defined by the DaqlODeviceType type.
DerrInvPostDataFormat	0211 - 130	Invalid Post Data Format – Indicates an invalid post processing data type when using the dagAdcSetDataForma API. The <i>postProcFormat</i> parameter in the
		dagAdcSetDataFormat is set to a type not defined by DagAdcPostProcDataFormat
		Corrective Action:
		If using the daqAdcSetDataFormat API then make sure that the value passed
		in the postProcFormat parameter is a valid type defined by
		DaqAdcPostProcDataFormatT

Error Name	Code # hex-dec	Description
DerrDaqStalled	83h - 131	 PersonalDaq Only. The low level driver has stalled in an attempt to continue collecting data. Corrective Actions: If using the PersonalDaq check that the unit is still properly connected to the PC and that all USB cables and hubs are properly connected.
DerrDaqLostPower	84h - 132	 PersonalDaq Only. The PersonalDaq does not have enough power to operate properly. The unit either does not have enough power supplied to it by the host pc or the auxiliary power is not connected. Some PC's and notebooks may not supply the appropriate power necessary for the PersonalDaq to operate properly. Corrective Actions: Some PC's and notebooks may not supply the appropriate power necessary for the PersonalDaq to operate properly and you may need to operate the PersonalDaq with the auxiliary power connection attached. Check the manual for instructions on using the auxiliary power input. Another way to circumvent this problem is to place an external USB hub between the host computer and the PersonalDaq. The placement of the USB hub allows the PersonalDaq to run off power supplied by the hub rather than the host PC.
DerrDaqMissing	85h - 133	 PersonalDaq Only. The PersonalDaq is missing. This occurs when a session is open with a PersonalDaq but the PersonalDaq has been found to be missing. Corrective Actions: Check the USB cable connections on the PC, PersonalDaq as well as any USB hubs in use.
DerrScanConfig	86h - 134	 The scan configuration programmed is not legal. One or more channel configuration parameters have been found to be in error. Corrective Actions: Check that all channels have been configured using legal parameters and settings for that channel type. Inspect channel parameter settings and flags for each channel being configured using the daqAdcSetScan or daqAdcRd API functions.
DerrInvTrigSense	87h - 135	 Invalid trigger sense specified. The trigger sense specified for a hardware based trigger (either TTL or Analog) is not allowed for the current device. Corrective Actions: Check that your device is capable of the using the trigger sense provided. For instance, some devices can use TTL Above and Below Level while not being available on other devices.
DerrInvTrigEvent	88h - 136	 Invalid trigger event specified. The trigger event specified is not available for the device being configured. Check that the value being passed is a legal value based upon trigger sense values in the header file for the programming language which you are using. Corrective Actions: Check that your device is capable of the using the trigger sense provided. For instance, some devices can use Software Analog Level triggers while not being passed is a legal trigger Event which is defined in the header file for the programming language which you are using.
DerrInvTrigChannel	89h - 137	 Invalid trigger channel specified. The trigger channel specified for a trigger Event is not valid. Corrective Actions: Check that the trigger channel provided is a valid channel number. Check that the trigger channel provided is currently configured in the scan list. See daqAdcSetScan for details on channel scan list configuration
DerrDacWaveformNotActive	8Ah - 138	 An invalid waveform operation has been issued while a waveform operation is not currently active. This may occur if the application issues an API which is only valid while waveform output is currently active. Corrective Actions: Typically this error will be issued when a waveform API such as daqDacArm function is issued while a waveform output is currently active. The application should refrain from making such calls during an active waveform output operation.

		Codes (Com.) - dagerror	
Error Name	Code # hex-dec	Description	
DerrDacWaveformActive	8B - 139	An invalid waveform operation has been issued while a waveform operation is currently active. This may occur if the application issues an API which is only valid while waveform output is not currently active. Corrective Actions: Typically this error will be issued when a waveform API such as daqDacTransferGetStat function is issued while a waveform output is not currently active. The application should refrain from making such calls when a waveform is not active.	
DerrDacNotEnoughMemory	8Ch - 140	 There is not enough memory to download the requested static waveform. Corrective Actions: Static waveforms are limited to 256,000 total update samples across all output channels. Change your static waveform to use a smaller number of updates or reduce the number of DAC channels for which you are outputting waveforms. 	
DerrDacBufferNotEqual	8Dh - 141	 The specified dynamic waveform buffers for each output channel are not of equal size. In dynamic waveform mode the waveforms for each output channel must be exactly the same size. Corrective Actions: Check that the output for each channel of waveform output is exactly the same size. 	
DerrDacBufferTooSmall	8Eh - 142	 The specified dynamic waveform buffer is too small to output. The waveform cannot be updated with a buffer less than 4096 update samples. Corrective Actions: Check that the output buffer is greater than 4096 when using dynamic waveform output mode. 	
DerrDacBufferUnderrun	8Fh - 143	 The specified dynamic waveform output operation has underrun. A waveform output underrun occurs when the DAC is able to output data faster than the controlling application can update the dynamic waveform buffers. Corrective Actions: Update the waveform buffer in a more timely manner. Increase the size of the waveform buffer to allow greater latency if the application cannot update the buffer quickly enough Decrease the DAC output update rate. 	
DerrDacPacerOverrun	90h - 144	The specified dynamic waveform output operation has experienced a pacer clock overrun. A pacer clock overrun will occur if the clock pulses pacing the outputs from the DAC's occur at less than 10us intervals. Normally, this should only occur if clocking the outputs from an external source or the ADC pacer clock since the DAC pacer clock is limited to 10us intervals. Corrective Actions: The only way to avoid this condition is to make sure that the clock pacing the DAC outputs never runs at less than 10us intervals.	
DerrDacPacerOverrun	91h - 145	The specified acquisition operation has experienced a pacer clock overrun. A pacer clock overrun will occur if the clock pulses pacing the acquisition occur at less than 5us intervals. Normally, this should only occur if clocking the acquisition from an external source since the internal ADC pacer clock is limited to 5us intervals. Corrective Actions: The only way to avoid this condition is to make sure that the clock pacing the acquisition never runs at less than 5us intervals.	
DerrAdcNotReady DerrArbitrationFailure	92h - 146 93h- 147	 N/A The board could not be communicated with properly on the PCI bus. This error indicates a critical condition that may cause the board to function improperly. Corrective Actions: Move the board to be another bus or slot number. Check BIOS settings to ensure that DMA is enabled on the bus and slot number in which the board is installed. 	
DerrDacWaveFileTooSmall	94h - 148	The specified dynamic waveform output file is too small to perform the desired waveform output. Corrective Actions: Increase the size of the waveform output file. 	

API Error Codes (Cont.) – dagError		
Error Name	Code # hex-dec	Description
DerrDacBufferUnderrun	95h - 149	The specified dynamic waveform output operation has underrun. A waveform output underrun occurs when the DAC is able to output data faster than the controlling application can update the dynamic waveform buffers. Corrective Actions:
		 Update the waveform buffer in a more timely manner. Increase the size of the waveform buffer to allow greater latency if the application cannot update the buffer quickly enough Decrease the DAC output update rate.
DerrDacWaveModeConflict	96h - 150	Conflicting waveform output modes have been specified. Mixing of static and dynamic waveform modes is not allowed for concurrent waveform output from different DAC channels. Corrective Actions: Change all DAC waveform channels to be either dynamic or static waveform output modes.
DerrTedsInfoInvStatus	97h - 151	WaveBook Series Only - Invalid TEDS status operation. No TEDS support can be found on this channel. Corrective Actions: • Check that a TEDS capable transducer is connected to the channel input
DerrAlreadyCreated	98h - 152	 Check that the application intends to use a TEDS capable channel. Device already created – Attempting to create a device which already exists. Duplicate device entries are not permitted. Corrective Actions: Check the device name for which you are creating. Make sure device name does not already exist. Device names and settings can be checked via the DaqX control panel applet.
DerrParentNotCreated	99h - 153	 Device Parent Not Created – Attempting to create a device whose specified parent device does not exist. Corrective Actions: Create the parent device for the device you are attempting to create. Check the parent device name for the device for which you are creating. Make sure that the parent device name already exists and is the device name which you are attempting to create a child from Device names and settings can be checked via the DaqX control panel applet.
DerrUnableToCreateDevice	9Ah - 154	 Unable to create specified device. Unable to create the specified device due to registry path or access issues. Corrective Actions: Make sure that the application and User privileges for the PC has access rights to write registry locations in the HKLM registry key.
DerrUnableToDeleteDevice	9Bh - 155	 Unable to Delete specified device. Unable to delete the specified device due to registry path or access issues. Corrective Actions: Make sure that the application and User privileges for the PC has access rights to write registry locations in the HKLM registry key.
DerrInvIPAddress	9Ch - 156	Invalid IP Address – IP Address specified was zero which is an invalid IP address setting. Corrective Actions: • Specify a proper, non-zero, IP address.
DerrOutputEnableConflict	9Dh - 157	Output Enable Conflict – A DaqBoard/500 device has an output conflict. Timer1 and AdcClockOutput are in conflict. Corrective Actions: • Disable Timer1 or disable AdcClockOutput. Both cannot be enabled at the same time.
DerrCalDataTypeMismatch	9Eh - 158	 Calibration Data Type Mismatch – Calibration points do not match the data type. Corrective Actions: Verify the data type and enter new calibration points of the same data type.
DerrDacFifoUnderrun	9Fh - 159	 DAC Fifo Underrun – Data is not being sent fast enough. Corrective Actions: Decrease the waveform playback speed Increase the buffer size

	API Error Codes (Cont.) – dagError		
Error Name	Code # hex-dec	Description	
DerrSetpointCountMismatch	A0 - 160	 Setpoint Count Mismatch – The number of Setpoints does not equal the number of channel setpoint flags set. Corrective Actions: Correct the mismatch situation. Each Setpoint must have one associated channel setpoint flag set. 	
DerrSetpointLevelInvalid	Al - 161	Setpoint Level Invalid – The Setpoint Level is outside the channel's range. Corrective Actions:	
		 Change the Setpoint Level and/or the associated channel's range such that the Setpoint Level falls within the channel's range. 	
DerrSetpointOutputType A2 - 162		Setpoint Output Type Invalid – The Setpoint Output Type is invalid. Corrective Actions:	
		• Set an appropriate output type for the setpoint.	
DerrSetpointOutputValue	A3 - 163	Setpoint Output Value Invalid – The Setpoint Output Value is outside the channel's range. Corrective Actions:	
		 Change the Setpoint Output value and/or the associated channel's range such that the setpoint output value falls within the channel's range. 	
DerrSetpointLimits	A3 - 164	Setpoint Comparison – Error flags when Limit B is greater than Limit A. For outside or inside window limits (DsfOutsideLimits, DsfInsideLimits) and for hysteresis (DsfHysteresis) Limit A must be greater than Limit B.	
		 Corrective Actions: Ensure that the value for Limit A is greater than the value for Limit B. 	

This page is intentionally blank.

Appendix A was removed due to outdated material.

Α

This appendix illustrates beginning a project with 32-bit Borland C++ Builder V5.0. Subsequent or previous versions of Borland C++ may require changes or modifications to these procedures. In this case, please consult Borland C++ documentation. However, though the project build procedures may differ, other 32-bit versions of Borland C++ (4.0, 6.0 or later) should function as well.

- **Note:** The **DaqX.DLL** has been developed and built using Microsoft Visual C++. However, a Borland C++ compatible export library **BCB5DaqX.LIB** is available.
- Note: BCB5DaqX.LIB and other language support files and examples are located in: <InstallDirectory>\DaqX\Programming Language Support\daq\C\32-bit Enhanced API\...

To begin your first project, perform the following:

- 1) Launch Borland C++ IDE.
- 2) Under the **File** menu, select **New**.
- 3) Select the project type that best meets your needs; or if building an existing DaqX example, select **Console Wizard** and use the following settings:
 - Source Type: C++
 - Use VCL: NO
 - Multi Threaded: NO
 - Console Application: YES
 - Specify project source: YES
 - Select the DaqX example file of interest.
- 4) Under the **Project** menu, select **Add to Project**.
- 5) Add ..\lib\BCB5DaqX.LIB to the project by browsing to the DaqX Programming Language Support directory described above.
- 6) If using an existing DaqX example, include the file ...\include\DaqRoutines.CPP

Note: _kbhit() may not be defined; use kbhit() instead.

- 7) If creating a new **.cpp** file, place an include statement for **DaqX.H** before any references to the DaqX API functions.
- 8) Under Compiler Options, set the "Pre-compiled header" option to "None"
- 9) IMPORTANT! Under Compiler Options, set the "Treat enum types as ints" option to true.
- 10) Save the project.

This appendix consists of two parts. Both outline the procedures required for custom reseller hardware and driver installation and distribution; and both include the names of driver files and their locations.

- o Part 1 applies to USB devices operating under a Windows 2000 or Windows XP operating system.
- Part 2 applies to non-USB devices operating under a Windows 9x, Me operating system, or under a Windows NT/2000/XP system, with device exceptions as noted.

Part 1 – USB Devices Operating under Windows 2000 or XP

Applies to:

Personal Daq/3000 Series devices DaqBoard/3000USB Series devices

The following files are required for installation by OEM.

PDaq3K.inf (requested when the hardware is detected) DaqClIn.dll DaqCoIn.dll PDaq3KLD.sys PDaq3K.sys DaqX.dll

File Installation is automated for the Personal Daq/3000 and DaqBoard/3000USB Series devices on plug-and-play operating systems.

Part 2 – Non-USB Devices Operating under Windows 9x, Me, or Windows NT, 2000, XP Systems

Installation by OEM excludes TempBook, Daq PC-Card, Personal Daq, WaveBook, WBK20, and DBK35.

This section applies to non-USB devices with exclusions as noted above. The following files are required for installation by OEM.

WIN 9x/Me	WIN NT/2000/XP	WIN 9x/Me and WIN NT/2000/XP
For All Devices daqRes.vxd For DaqBoard/2000 Series and DaqBook/2000 Series devices DaqFind.vxd	For All Devices daqRes.sys	For All Devices DaqX.cpl DaqX.dll DaqComp.dll (if using compatibility layer)

Device Series	Files for Windows System Drivers		
DaqBoard/500	WIN 2000/XP DaqBd50x.inf DaqBd50x.sys		
DaqBoard/1000 DaqBoard/2000	WIN 9x/Me DaqX.inf Daq2k0.vxd Daq2k1.vxd Daq2k2.vxd Daq2k3.vxd	WIN 2000/XP DaqXNT.inf DaqBrd2k.sys	WIN NT DaqBrd2k.sys
DaqBoard/3000		WIN 2000/XP DaqXNT.inf DaqBrd2k.sys	
DaqBook/2000 DaqLab/2000 DaqScan/2000	WIN NT/2000/XP DaqBk2k.sys		
DaqBook/2000A	WIN NT/2000/XP DaqBk2k.sys	WIN 9x/Me DaqBk2k0.vdx DaqBk2k1.vdx DaqBk2k2.vdx DaqBk2k3.vdx	
ISA-Type DaqBoards	WIN 9x DaqBrd0.vxd DaqBrd1.vxd DaqBrd2.vxd DaqBrd3.vxd	WIN NT/2000/XP DaqBrd.sys	
DaqBook/100 DaqBook/200	WIN 9x DaqBk0.vxd DaqBk1.vxd DaqBk2.vxd DaqBk3.vxd	WIN NT/2000/XP DaqBk.sys	

Installation Locations:

Place all .DLLs and .CPLs into C:\Windows\System (9X/Me) or C:\Windows\System32 (NT/2000/XP) Place all .VxDs into C:\Windows\System (9X/Me Only) Place all .SYSs into C:\Windows\System32\Drivers (NT/2000/XP Only)

You must reboot the computer and then configure the device via the Daq Configuration applet in the Control Panel. Refer to the applicable device user's manual for more information.

PDF versions of the manuals are included on the data acquisition CD and can be accessed from the CD's intro-screen using the <View PDFs> button.

File Installation is automated via the .INF files for the DaqBoard/500, /1000, and /2000 Series Boards under plug-and-play operating systems.

File Installation is automated for the Personal Daq/3000 and DaqBoard/3000USB Series devices on plugand-play operating systems. This page is intentionally blank.

API Programming Model for 9513 Counter-Timer Chip Devices D-1

daq9513GetHold D-3

daq9513MultCtrl D-4

daq9513SetAlarm D-6

daq9513SetCtrMode D-7

- daq9513SetHold D-12
- daq9513SetLoad D-13

daq9513SetMasterMode D-14

This appendix only applies to product versions that make use of a 9513 counter-timer chip.

The 9513 counter-timer chip devices include the following:

- DaqBook/100 Series
- DaqBook/200 Series
- DaqBoard/100 Series
- DaqBoard/200 Series

API Programming Model for 9513 Counter-Timer Chip Devices

Variable Rate, Variable Duty-Cycle Square-Wave Output

This section demonstrates the use of the counter/timer section of a DagBook/100/200 or of a Initialize 9513 master daq9513SetMasterMode DaqBoard/100A/200A with the P3 port. After mode register. configuring the counter and setting the load and hold registers, the counter is armed. At this point, program daq9513SetCtrMode Configure the counter. execution continues while the counter outputs the signal. This example generates a variable rate, variable dutydaq9513SetLoad Set the load register. cycle square wave. Functions used include: Vbdaq9513SetMasterMode&(handle&,deviceType& ,whichDevice&,foutDiv&, cntSource&, compl&, daq9513SetHold Set the hold register. comp2&, tod&) Vbdaq9513SetCtrMode&(handle&,deviceType&,wh daq9513MultCtrl Load and arm counter 1. ichDevice&, ctrNum&,gayeCtrl&, cntEdge&, cntSource&, specGate&, reload&, cntRepeat&, cntType&, cntDir&, outputCtl&) User program code Vbdaq9513SetHold&(handle&, deviceType&,whichDevice&, ctrNum&, ctrVal%) Vbdaq9513SetLoad&(handle&,deviceType&,which No Stop counter? Device&, ctrNum&, ctrVal%) Vbdaq9513MultCtrl&(handle&,deviceType&,whic Yes hDevice&, ctrCmd&, ctr1&, ctr2&, ctr3&, ctr4&, ctr5&) daq9513MultCtrl Disable counter output. daq9513SetMasterMode

Initialize the 9513 master mode register fout divider: 10, fout source: DcsF2 (100 kHz), compare1: no, compare 2: no, time of day disabled. This will place a 10 kHz pulse on the oscillator output. The **daq9513SetMasterMode** function will initialize the counter/timer section and configure several of its parameters. This is a system-wide function that affects all 5 counter timers.

Aside from initializing the counter/timer section, this application does not use most of the capabilities of the daq9513SetMasterMode function. The first two arguments in this function select a clock source for the fout signal found on connector P3, then select a divider for that signal. F2 in this application is a fixed, internal frequency source of 100 kHz. Our example divides this fixed frequency by 10 yielding a signal on fout of 10 kHz.

ret& = VBdaq9513SetMasterMode&(handle&, DiodtLocal9513&, 0, 10, DcsF2&, 0, 0, DtodDisabled&)

The daq9513SetCtrMode function configures an individual counter in the 9513. The first argument specifies the counter to be configured; the second argument specifies the internal operation of the gate control. Our application does not use the gate, so it is disabled. The fixed 100 kHz internal clock (F1) is used as the source. By setting the reload parameter to 1, the counter will use the 'load' register and the 'hold' register to generate the pulse train. When the counter is armed, the 'load' register value is loaded then decremented on every edge of the F1 clock. The output signal will be high during this phase. When the terminal count is reached, the 'hold' register is loaded then decremented on every edge of the F1 clock. The output signal is low during this phase. If the reload argument is set to 0, only the 'load' register is used, always yielding a 50% duty-cycle pulse train. The cntRepeat argument specifies whether the pulse train should execute once or repeat continuously. The counter interprets the load and load register as either binary or BCD, depending on the value of the cntType argument. A value of 5 counted down has the same effect as a value of 65,530 counted up.

ret& = VBdaq9513SetCtrMode&(handle&, DiodtLocal9513&, 0, 1, DgcNoGating&, 1, DcsF1&, 0, 1, 1, 0, 0, DocTCToggled&)

Set the load register to 75 and the hold register to 25. This produces a high duty-cycle of 75% and (with 100 total counts to count down) a frequency of 10 kHz.

```
' Load the load register: 75 low counts & hold register with 25 counts
ret& = VBdaq9513SetLoad&(handle&, DiodtLocal9513, 0, 1, 75)
ret& = VBdaq9513SetHold&(handle&, DiodtLocal9513, 0, 1, 25)
```

The daq9513MultCtrl function will arm counter 1.

```
ret& = VBdaq9513MultCtrl&(handle&, DiodtLocal9513&, 0, DmccLoadArm&, 1, 0,
0, 0, 0)
```

Continue the pulse train until user terminates it.

```
Print "A 10Khz 25% duty cycle square wave is on the counter 1 output.":
    Print
MsgBox "Click to halt counter 1 output.", , "Counter 1"
        ' Halt all output
ret& = VBdaq9513MultCtrl&(handle&, DiodtLocal9513&, 0, DmccDisarm&, 1, 0,
        0, 0, 0)
ret& = VBdaq9513SetMasterMode&(handle&, DiodtLocal9513&, 0, 0, DcsF2&, 0, 0,
DtodDisabled&)
Print "Outputs disabled."
```

daq9513GetHold

Also See: daq9513SetCtrMode

Format

daq9513GetHold(handle, deviceType, whichDevice, ctrNum, ctrVal)

Purpose

daq9513GetHold reads the hold register of the specified counter.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which to get the 9513 hold register
deviceType	DaqIODeviceType	Specifies the 9513 device type
whichDevice	DWORD	Specifies which 9513
ctrNum	DWORD	The counter number
ctrVal	PWORD	Variable which stores the value read from the hold register of the selected counter

Parameter Values

handle: obtained from the daqOpen function. deviceType: must be set to value DiodtLocal9513 whichDevice: valid value for all current devices is 0 ctrNum: valid values range from 1 to 5 ctrVal: pointer to a varible in which the contents of the hold register will be placed; valid values for the hold register range from 0 to 65,535

Returns

DerrInvCtrNum	
DerrNotCapable	
DerrNoError	

Invalid counter No 9513 available No error

For more details on error messages, please refer to the Daq Error Table.

Function Usage

The hold register read by daq9513GetHold is used in event-counting applications to store counter values accumulated by the daq9513MultCtrl function. daq9513GetHold can read the hold register while the count process is running without interrupting the process.

Prototypes

C/C++

daq9513GetHold(DaqHandleT handle, DaqIODeviceType deviceType, DWORD
whichDevice, DWORD ctrNum, PWORD ctrVal);

Visual BASIC

```
VBdaq9513GetHold&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&,
ByVal ctrNum&, ctrVal%)
```

Program References

None

daq9513MultCtrl

Also See: daq9513SetCtrMode, daq9513SetMasterMode

Format

```
daq9513MultCtrl(handle, deviceType, whichDevice, ctrCmd, ctr1, ctr2, ctr3,
ctr4, ctr5)
```

Purpose

daq9513MultCtrl can arm or disarm specified counters, can save data from the specified counters to the load and/or hold register, or can load data from the load and/or hold register to the specified counters; each parameter can be activated for multiple counters simultaneously.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which multiple counter commands will be activated
deviceType	DaqIODeviceType	Specifies the 9513 device type
whichDevice	DWORD	Specifies which 9513
ctrCmd	Daq9513MultCtrCommand	The counter command
ctr1	BOOL	A flag that, if true, enables the counter command to be executed on counter 1; if false, it does nothing to counter 1
ctr2	BOOL	A flag that, if true, enables the counter command to be executed on counter 2; if false, it does nothing to counter 2
ctr3	BOOL	A flag that, if true, enables the counter command to be executed on counter 3; if false, it does nothing to counter 3
ctr4	BOOL	A flag that, if true, enables the counter command to be executed on counter 4; if false, it does nothing to counter 4
ctr5	BOOL	A flag that, if true, enables the counter command to be executed on counter 5; if false, it does nothing to counter 5

Parameter Values

handle: obtained from the daqOpen command deviceType: must be set to value DiodtLocal9513 whichDevice: valid value for all devices is 0 ctrCmd: see table below ctr1-ctr5: valid values are either true (≠0) or false (=0).

Parameter Type Definitions

ctrCmd-(Daq9513MultCtrCommand)					
Definition Description					
DmccArm	Enable counters to start	Enable counters to start			
DmccLoad	Load initial counter values from either load or hold register	Load initial counter values from either load or hold register			
DmccLoadArm	Perform initial loading and enable counting	Perform initial loading and enable counting			
DmccDisarmSave	Disable counters and save counter value				
DmccSave	Transfer current counter value to hold register	Transfer current counter value to hold register			
DmccDisarm	Halt counting	Halt counting			

Returns

DerrInvCtrCmd DerrNotCapable DerrNoError Invalid counter command No 9513 available No error

For more details on error messages, please refer to the Daq Error Table.

Prototypes

C/C++

daq9513MultCtrl(DaqHandleT handle, DaqIODeviceType deviceType, DWORD
whichDevice, Daq9513MultCtrCommand ctrCmd, BOOL ctr1, BOOL ctr2, BOOL
ctr3, BOOL ctr4, BOOL ctr5);

Visual BASIC

VBdaq9513MultCtrl&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal ctrCmd&, ByVal ctr1&, ByVal ctr2&, ByVal ctr3&, ByVal ctr4&, ByVal ctr5&)

Program References

9513EX01.CPP, 9513EX01.FRM (VB)

daq9513SetAlarm

Also See: daq9513SetMasterMode

Format

```
daq9513SetAlarm(handle, deviceType, whichDevice, alarmNum, alarmVal);
```

Purpose

daq9513SetAlarm sets the specified alarm register.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device from which to get 9513 frequency
deviceType	DaqIODeviceType	Specifies the 9513 device type
whichDevice	DWORD	Specifies which 9513
alarmNum	DWORD	The alarm register number
alarmVal	DWORD	The value to write to the selected alarm register

Parameter Values

handle: obtained from the daqOpen function deviceType: must be set to value DiodtLocal9513 whichDevice: valid value for all devices is 0 alarmNum: valid values range from 1 to 2 alarmVal: valid values range from 0 to 65,535

Returns

DerrInvCtrNum	Invalid counter number
DerrNotCapable	No 9513 available
DerrNoError	No error

For more details on error messages, please refer to the Daq Error Table.

Function Usage

The alarm register set by daq9513SetAlarm is only used if the corresponding comparator has been enabled using the daq9513SetMasterMode function. The alarm register can then be used with the comparators described in the entry for daq9513SetMasterMode.

Prototypes

C/C++

daq9513SetAlarm(DaqHandleT handle, DaqIODeviceType deviceType, DWORD
whichDevice, DWORD alarmNum, DWORD alarmVal);

Visual BASIC

VBdaq9513SetAlarm&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal alarmNum&, ByVal alarmVal&)

Program References

None

daq9513SetCtrMode

Also See: daq9513SetHold,daq9513MultCtrl

Format

daq9513SetCtrMode (handle, deviceType, whichDevice, ctrNum, gateCtr1, cntEdge, cntSource, specGate, reload, cntRepeat, cntType, cntDir, outputCtrl)

Purpose

daq9513SetCtrMode sets the 9513's mode register for a specified counter. Setting this register defines how the specific counter works for a variety of square waves, pulse generation, and event counting.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device for which the 9513 counter mode will be set
deviceType	DaqIODeviceType	Specifies the 9513 device type
whichDevice	DWORD	Specifies which 9513
ctrNum	DWORD	The counter number
gateCtrl	Daq9513GatingControl	The gating control mode
cntEdge	BOOL	If true, will count on a rising count edge; if false, it will count on a falling count edge
cntSource	Daq9513CountSource	Count source
specGate	BOOL	If true, will enable the special gate; if false, it will disable the special gate
reload	BOOL	If true, will reload from load or hold registers; if
		false, it will reload only from load
cntRepeat	BOOL	If true, will count repetitively; if false, it will count once
cntType	BOOL	If true, will select a BCD count; if false, it will select a binary count
cntDir	BOOL	If true, will count up; if false, it will count down
outputCtrl	Daq9513OutputControl	Output control mode

Parameter Values

handle: obtained from the daqOpen function deviceType: must be set to value DiodtLocal9513 whcihDevice: valid value for all devices is 0 ctrNum: valid values range from 1 to 5. gateCtrl: see table below cntEdge: valid values are true ($\neq 0$) or false (=0) cntSource: see table below specGate: valid values are true ($\neq 0$) or false (=0) reload: valid values are true ($\neq 0$) or false (=0) cntRepeat: valid values are true ($\neq 0$) or false (=0) cntType: valid values are true ($\neq 0$) or false (=0) cntType: valid values are true ($\neq 0$) or false (=0) cntDir: valid values are true ($\neq 0$) or false (=0) cntDir: valid values are true ($\neq 0$) or false (=0)

Parameter Type Definitions

gateCtrl-(Daq9513GatingControl)

Definition Description					
DgcNoGating	Gating disabled				
DgcHighTCNM1	Active level high of TC toggled output of previous (N-1) counter				
DgcHighLevelGateNP1	Active level high of gate next (N+1) counter				
DgcHighLevelGateNM1	Active level high of gate previous (N-1) counter				
DgcHighLevelGateN	LGateN Active level high of gate of selected (N) counter				
DgcLowLevelGateN	Active level low of gate of selected (N) counter				
DgcHighEdgeGateN Active rising edge of gate of selected (N) counter					
DgcLowEdgeGateN	Active falling of gate of selected (N) counter				

cntSource-(Daq9513CountSource)							
Definition	Definition Description						
DcsTcnM1*	TC toggled output of previous (N-1) counter						
DcsSrcl	Counter 1 input (pin36 of P3)						
DcsSrc2	Counter 2 input (pin19 of P3)						
DcsSrc3	Counter 3 input (pin17 of P3)						
DcsSrc4	Counter 4 input (pin15 of P3)						
DcsSrc5	Counter 5 input (pin13 of P3)						
DcsGatel	Counter 1 gate (pin37 of P3)						
DcsGate2	Counter 2 gate (pin18 of P3)						
DcsGate3	Counter 3 gate (pin16 of P3)						
DcsGate4	Counter 4 gate (pin14 of P3)						
DcsGate5**	Counter 5 gate (pin12 of P3)						
DcsF1**	Onboard 1 MHz Clock						
DcsF2**	Onboard 100 kHz Clock						
DcsF3**	Onboard 10 kHz Clock						
DcsF4**	Onboard 1 kHz Clock						
DcsF5**	Onboard 100 Hz Clock						
*invalid with daq9513SetMast	*invalid with daq9513SetMasterMode or daq9513RdFreq						
**invalid with daq9513RdFreq							

outputCtrl-(Daq9513OutputControl)						
Definition	Definition Description					
DocInactiveLow	Inactive – Always low					
DocHighTermCntPulse	High impulse on terminal count					
DocTCToggled	Toggled on terminal count					
DocInactiveHighImp	Inactive w/ high impedance					
DocLowTermCntPulse	Low impulse on terminal count					

Returns

Invalid channel
Invalid gate
Invalid source
Invalid output
No 9513 available
No error

For more details on error messages, please refer to the Daq Error Table.

Function Usage

Input/Output Parameters

The gate control (gateCtrl) parameter dictates how the counter will use its gate input (P3 pins 37, 18, 16, 14 and 12) or another counter's gate input. Possible settings are as follows:

- If the gate is disabled using the DgcNoGating definition, it will be ignored and the counter will run as long as it is armed.
- If a level gate control is selected (using the DgcHighLevelGateNPI, DgcHighLevelGateNMI, DgcHighLevelGateN, or DgcLowLevelGateN definitions), the counter will operate only while armed and the selected high or low level is applied to the gate.
- If an edge-sensitive gate control is selected using the DgcHighEdgeGate or DgcHighEdgeGateN definitions, the counter will operate after a rising or falling edge is detected on the gate input.

Most gate control modes select gate N (gate of the selected counter) or gate inputs of the previous (N-1) and next (N+1) counters. Thus, counter 3 could use the gate input of counter 2 by selecting N-1, counter 4 by selecting N+1, or its own gate input by selecting N. Counter 1 and counter 5 are considered adjacent when selecting gate input N+1 or N-1. The final gate control mode allows the TC-toggled output (see the following description of the output control parameter) of the previous counter (N-1) to be the gate. The selected counter will operate only when the previous counter's TC-toggled output is high.

The output control (outputCtrl) parameter controls the state of the counter output (P3 pins 35, 34, 33, 32, 31). There are 2 inactive and 3 active output modes. If inactive, the output can be driven to low impedance, or increased to high impedance. The active modes are all associated with the terminal count (TC) which is the moment in time when the counter reaches 0. This can happen by counting above 65,535 in binary count mode (9,999 in BCD count mode) or counting down below 1. The output can be either driven high during the TC and low otherwise, driven low during the TC and high otherwise, or toggled every time a TC occurs. The TC-toggled mode is used to generate variable duty-cycle square waves.

Counter Parameters

The count source (cntSource) parameter selects the source used as input to the specified counter. The count source can be any one of the following:

- the counter inputs--Src1 to Src5 (P3 pins 36, 19, 17, 15 or 13)
- the counter gates--Gate1 to Gate5 (P3 pins 37, 18, 17, 16 or 14)
- an internal frequency--F1 to F5
- the TC-toggled output of the previous counter (N-1)

The internal frequencies are divide-by-10 divisions of the onboard oscillator which is by default 1 MHz, but can be jumpered to 10 MHz. The sources F1 through F5 correspond to the frequencies 1 MHz, 100 kHz, 10 kHz, 1 kHz and 100 Hz. The TC-toggled output of the previous counter can be used as a source—allowing counters to be cascaded without external connections.

The cntEdge, cntDir, cntType, cntRepeat, reload, and specGate parameters all take boolean value types. For the following discussions, if any of these parameters has a non-zero value, it is understood to be true; if a parameter has a value of zero, it is understood to be false.

The count edge (cntEdge) parameter selects whether the counter will count when it receives a rising or falling edge on its count source (see the count source parameter description above). When set to true, a rising count edge will be used; if the value of cntEdge is false, and falling count edge will be used.

The count direction (cntDir) parameter selects whether the counter will count up or down. If cntDir is set to true, the count will go up; if the value of cntDir is false, the count will go down. The counter is normally configured for down counting when generating a pulse or square wave. The load register would be set to a positive value that would descent in decrements to zero, defining the duration or width of the waveform. In event counting, the counter would initially be set to zero and configured to count up (in this case, the hold register would contain the number of events received).

The count type (cntType) parameter selects either binary or binary-coded decimal (BCD) counting. A value of true for this parameter selects a BCD count, while a value of false will select a binary count. Binary format accepts a 16-bit number ranging from 0 to 65,535. BCD format accepts four 8-bit numbers representing 0 to 9, ranging from 0 to 9,999. In this format, each of the 8-bit numbers represents a placeholder in a base-10 system—for instance, if the thousands bit is 2, the hundreds bit is 5, the tens bit is 7, and the ones bit is 9, then the value of the four bits together is 2,579.

The count repeat (cntRepeat) parameter causes the counter to re-arm after TC occurs if true, and does not re-arm the counter after TC if false. Applications such as software re-triggerable 1-shots would disable the repeat flag so the 1-shot occurs only after the counter arm command is sent. Other applications (such as rate generators, square waves and hardware re-triggerable 1-shots) would enable the count repeat so that the counter will run until disarmed.

The reload (reload), special gate(specGate) and gate control (gateCtrl) parameters can be used together to configure the counter. Using these three commands, the counter can be configured in one of four ways:

- If the reload parameter is set to false, then the counter will only use the contents of the load register for counting.
- If the reload parameter is true and the special gate parameter is false, then the counter will alternate between registers.
- If both the reload and the special gate parameters are true, and the gate control parameter is inactive, then the counter will use the hold register for counting if the counter's gate is high, or to use the load register if the gate is low.
- If both the reload and the special gate parameters are true, and the gate control parameter is active, then the operation is dependent on the gateCtrl parameter value.

The chart below summarizes the various configurations of counter mode operation.

	1 -	_		_			-		-						-	_			-					
Counter Mode	Α	В	С	D	Ε	F	G	Η	Ι	J	Κ		Μ	Ν	0	Ρ	Q	R	S	Т	U	۷	W	
Special Gate (CM7)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Reload Source (CM6)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
Repetition (CM5)	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1
Gate Control (CM15-CM-13); N=no gating; L=level; E=edge	Ν	L	Е	Ν	L	Е	Ν	L	Е	Ν	L	Е	Ν	L	Е	Ν	L	Е	Ν	L	Е	Ν	L	Е
Count to TC once, then disarm	Х	Х	Х											Х	Х									
Count to TC twice, then disarm							Х	Х	Х										Х					
Count to TC repeatedly without disarming				х	х	х				х	х	х					Х	х				Х		Х
Gate input does not gate counter input	х			х			х			х									х			Х		
Count only during active gate level		Х			Х			Х			Х			Х			Х							
Start count on active gate edge and stop count on next TC			х			х									х			х						Х
Start count on active gate edge and stop count on second TC									х			х												
No hardware re-triggering	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							Х			Х		Х
Reload counter from Load Register on TC	х	х	х	х	Х	Х								Х	Х		Х	х						Х
Reload counter on each TC, alternating reload source between Load and Hold Registers							х	х	х	х	х	х												
Transfer Load Register into counter on each TC that gate is LOW, transfer Hold Register into counter on each TC that gate is HIGH																			x			x		
On active gate edge transfer counter into Hold Register and then reload counter from Load Register														х	x		х	x						
On active gate edge transfer counter into Hold Register, but counting continues																								х

Counter Mode Operating Summary

Prototypes

C/C++

daq9513SetCtrMode(DaqHandleT handle, DaqIODeviceType deviceType, DWORD whichDevice, DWORD ctrNum, Daq9513GatingControl gateCtrl, BOOL cntEdge, Daq9513CountSource cntSource, BOOL specGate, BOOL reload, BOOL cntRepeat, BOOL cntType, BOOL cntDir, Daq9513OutputControl outputCtrl);

Visual BASIC

VBdaq9513SetCtrMode&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal ctrNum&, ByVal gateCtrl&, ByVal cntEdge&, ByVal cntSource&, ByVal specGate&, ByVal reload&, ByVal cntRepeat&, ByVal cntType&, ByVal cntDir&, ByVal outputCtrl&)

Program References

DAQEX.FRM (VB)

daq9513SetHold

Also See: daq9513SetCtrMode, daq9513SetMasterMode

Format

daq9513SetHold (handle, deviceType, whichDevice, ctrNum, ctrVal)

Purpose

daq9513SetHold outputs a value to the hold register of the specified counter.

Parameter Summary

Parameter	Type Description									
handle	DaqHandleT	Handle to the device to set the 9513 hold register								
deviceType	DaqIODeviceType	Specifies the 9513 device type								
whichDevice	DWORD	Specifies which 9513								
ctrNum	DWORD	The counter number								
ctrVal	WORD	Variable which stores the value read from the hold register of the selected counter								

Parameter Values

handle: obtained from the daqOpen function deviceType: must be set to value DiodtLocal9513 whichDevice: valid value for all current devices is 0 ctrNum: valid values range from 1 to 5 crtVal: pointer to a variable from which the hold register will be set. Valid values for the hold register range from 0 to 65,535

Returns

DerrInvCtrNum	Invalid channel
DerrInvGateCtrl	Invalid gate
DerrInvCntSource	Invalid source
DerrInvOutputCtrl	Invalid output
DerrNotCapable	No 9513 available
DerrNoError	No error

For more details on error messages, please refer to the Daq Error Table.

Function Usage

The hold register can be used to set the counter's initial value using the daq9513MultCtrl function. Please see the daq9513SetMasterMode and daq9513SetCtrMode function entries for a description of various uses for the hold register.

Prototypes

C/C++

daq9513SetHold(DaqHandleT handle, DaqIODeviceType deviceType, DWORD
whichDevice, DWORD ctrNum, WORD ctrVal);

Visual BASIC

VBdaq9513SetHold&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal ctrNum&, ByVal ctrVal%)

Program References

9513EX01.CPP, 9513EX01.FRM (VB)

daq9513SetLoad

Also See: daq9513SetCtrMode, daq9513SetMasterMode

Format

daq9513SetLoad (handle, deviceType, whichDevice, ctrNum, ctrVal)

Purpose

daq9513SetLoad outputs a value to the load register of the specified counter.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device to set the 9513 load register
deviceType	DaqIODeviceType	Specifies the 9513 device type
whichDevice	DWORD	Specifies which 9513
ctrNum	DWORD	The counter number
ctrVal	WORD	Variable which stores the value read from the load register of the selected counter

Parameter Values

handle: obtained from the daqOpen function deviceType: must be set to value DiodtLocal9513 whichDevice: valid value for all devices is 0 ctrNum: valid values range from 1 to 5 ctrVal: pointer to a variable from which the load register will be set. Valid values for the load register range from 0 to 65,535

Returns

DerrInvCtrNum	Invalid channel
DerrInvTod	Invalid time of day mode
DerrInvDiv	Invalid divisor
DerrNotCapable	No 9513 available
DerrNoError	No error

For more details on error messages, please refer to the Daq Error Table.

Function Usage

The load register can be used to set the counter's initial value using the daq9513MultCtrl. Please see the daq9513SetMasterMode and daq9513SetCtrMode function entries for a description of various uses for the load register.

Prototypes

C/C++

daq9513SetLoad(DaqHandleT handle, DaqIODeviceType deviceType, DWORD
whichDevice, DWORD ctrNum, WORD ctrVal);

Visual BASIC

Vbdaq9513SetLoad&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal ctrNum&, ByVal ctrVal%)

Program References

9513EX01.CPP, 9513EX01.FRM (VB)

daq9513SetMasterMode

Also See: daq9513SetLoad, daq9513MultCtrl, daq9513GetHold, daq9513SetCtrMode

Format

daq9513SetMasterMode (handle, deviceType, whichDevice, foutDiv, cntSource, comp1, comp2, tod)

Purpose

daq9513SetMasterMode is used to set the counter's master mode register, which is used to configure the frequency output pin (P3 pin 30), the comparators of counter 1 and 2, and the time-of-day operation of the 9513 chip.

Parameter Summary

Parameter	Туре	Description
handle	DaqHandleT	Handle to the device in which to set the 9513 master mode
deviceType	DaqIODeviceType	Specifies the 9513 device type
whichDevice	DWORD	Specifies which 9513
foutDiv	DWORD	The frequency output (fout) divider
cntSource	Daq9513CountSource	The frequency output (fout) source
compl	BOOL	A flag that, if true, will enable the compare 1
		operation; if false, it will be disabled
comp2	BOOL	A flag that, if true, will enable the compare 2
		operation; if false, it will be disabled
tod	Daq9513TimeOfDay	The time-of-day mode

Parameter Values

handle: obtained from the daqOpen function
deviceType: must be set to value DiodtLocal9513
whichDevice: valid value for all devices is 0
foutDiv: valid values range from 1 to 16; 0 selects divider of 16
cntSource:see table below
comp1: valid values are either true (≠ 0) and false (= 0)
comp2: valid values are either true (≠ 0) and false (= 0)
tod: see table below

Parameter Type Definitions

Definition	Description	
DcsTcnM1*	TC toggled output of previous (N-1) counter	
DcsSrcl	Counter 1 input (pin36 of P3)	
DcsSrc2	Counter 2 input (pin19 of P3)	
DcsSrc3	Counter 3 input (pin17 of P3)	
DcsSrc4	Counter 4 input (pin15 of P3)	
DcsSrc5	Counter 5 input (pin13 of P3)	
DcsGatel	Counter 1 gate (pin37 of P3)	
DcsGate2	Counter 2 gate (pin18 of P3)	
DcsGate3	Counter 3 gate (pin16 of P3)	
DcsGate4	Counter 4 gate (pin14 of P3)	
DcsGate5	Counter 5 gate (pin12 of P3)	
DcsF1	Onboard 1 MHz Clock	
DcsF2	Onboard 100 kHz Clock	
DcsF3	Onboard 10 kHz Clock	
DcsF4	Onboard 1 kHz Clock	
DcsF5	Onboard 100 Hz Clock	

tod-(Daq9513TimeOfDay)		
Definition	Description	
DtodDisabled	Time of day function is not used	
DtodDivideBy5	A 50Hz signal is being applied to pin 36 of P3 to generate time of day input	
DtodDivideBy6	A 60Hz signal is being applied to pin 36 of P3 to generate time of day input	
DtodDivideBy10	A 100Hz signal is being applied to pin 36 of P3 to generate time of day input	

Returns

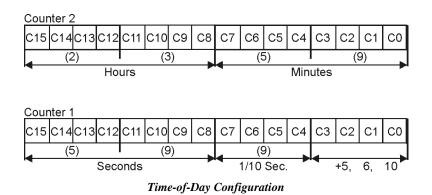
DerrInvCntSource	Invalid source
DerrInvTod	Invalid time of day mode
DerrInvDiv	Invalid divisor
DerrNotCapable	No 9513 available
DerrNoError	No error

For more details on error messages refer to the Daq Error Table. The table precedes Appendix A.

Function Usage

All dag9513SetMasterMode parameters default to zero after dagOpen.

Configuring the Frequency Output Pin and Comparators


The frequency output source (cntSource) parameter selects what signal will be output on the frequency output (fout) pin. The four source can be any one of the following:

- the counter inputs--Src1 to Src5 (P3 pins 36, 19, 17, 15 or 13)
- the counter gates--Gate1 to Gate5 (P3 pins 37, 18, 17, 16 or 14)
- an internal frequency--F1 to F5

The sources F1 through F5 correspond to the frequencies 1 MHz, 100 kHz, 10 kHz, 1 kHz and 100 Hz. The fout divider will divide the selected source by 1 to 16 before outputting the signal on the fout pin.

The 2 comparator flags (comp1 and comp2) control the comparators associated with counters 1 and 2. If a comparator is set to true, the value in the corresponding alarm register (set with the daq9513SetAlarm function) will be compared with the value in the counter. The output of the corresponding counter will become true when the value in the counter reaches the value in the alarm register; the output remains true until the counter value changes. The polarity of the output depends on the output control (set with the daq9513SetCtrMode function). When either the output control is high, the terminal count pulsed, or the terminal count toggled, then the output will be high while the comparator is true. When the output control is low and terminal count pulsed, the output will be low while the comparator is true.

Using the Time-Of-Day Parameter

The time-of-day (tod) parameter is used to enable or disable the time-of-day operation. The time-of-day operation is a special mode which causes counters 1 and 2 to turn over at counts that generate 24-hour time-of-day accumulations. A 10 Hz clock source is needed to drive the time-of-day clock. Therefore, if a 100 Hz, 60 Hz or 50 Hz signal is applied to the input of counter 1 (P3 pin 36), the appropriate divide-by mode (DtodDivideBy10, DtodDivideBy6 and DtodDivideBy5, respectively) must be activated. So, if a 60 Hz signal is being used, the tod parameter must be set to divide by 6 (DtodDivideBy6). The resolution of the time-of-day operation is 0.1 seconds. The hold registers of counters 1 and 2 will hold the 24-hour time.

The following steps must be performed to use the time-of-day operation:

- 1. Set the master mode register as described above.
- 2. For general-purpose time keeping, configure counter 1 using daq9513SetCtrMode with the following parameters: no gating, count on rising edge, special gating disabled, reload from hold only, count repetitively, BCD counting and count up. The count source can be any of the available sources. The output control does not affect time-of-day operation.
- 3. Set the mode of counter 2 with the same settings as counter 1, except that the count source should be TC toggled of the previous (N-1) counter. This allows internal concatenation of counter 1 to counter 2.
- 4. Set the load registers of counter 1 and 2 to zero, using the dag9513SetLoad function.
- 5. Initialize the current 24-hour time-of-day by setting the load registers of counters 1 and 2, using the format shown in the figure above (again using daq9513SetLoad).
- 6. Repeat step 4.

Prototypes

C/C++

daq9513SetMasterMode(DaqHandleT handle, DaqIODeviceType deviceType, DWORD
whichDevice, DWORD foutDiv, Daq9513CountSource cntSource, BOOL comp1, BOOL
comp2, Daq9513TimeOfDay tod);

Visual BASIC

VBdaq9513SetMasterMode&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal foutDiv&, ByVal cntSource&, ByVal compl&, ByVal comp2&, ByVal tod&)

Program References

9513EX01.CPP, 9513EX01.FRM

This page is intentionally blank.

Glossary

This list of terms is intended to give a brief background on some of the terms used throughout the Daq Programmers Manual. These definitions should prove a highly informative primer for those unfamiliar with the data acquisition terminology.

8255

Refers to Intel 8255 chip. This chip (or emulation of the chip) is used in Daq products for P2 Digital I/O support.

9513

Refers to the Texas Instruments 9513 chip. This chip is used by DaqBook/100 Series, DaqBook/200 Series, and ISA-type DaqBoard products for Counter/Timer operations.

A/D

A/D refers to an "analog-to-digital" converter. A/D's convert a voltage over a specific range to a digitized reading. The value of the digitized reading depends upon the resolution of the A/D device. Most A/D devices have resolution of 12 or 16 bits. The range over which the conversion is performed depends upon the gain and polarity selected.

A/D Resolution

With 12-bit A/D's, the significant values of the converted reading can range from 0 to 4,095 over the specified voltage range. With 16-bit A/D's, the significant values of the converted reading can range from 0 to 65,535 over the specified voltage range.

A/D Data Representation

At times, the presentation of A/D values may differ, depending on the device or the current mode of the device. For instance, a 12-bit reading may be normalized to a 16-bit ranging from 0 to 65,535, where the 4 least significant bits are not relevant to the actual value of the reading. Also, a reading may be signed if the range specified is a bipolar voltage, where the digitized reading will range from -32,768 to +32,767 rather than from 0 to 65,535.

Acquisition

An acquisition is the collection of analog, digital or counter input based upon a common input synchronization event. The common synchronization event can be an internal time-base generated by an on-board clock, or it can be an external signal. The start event (also referred to as the "trigger event") for an acquisition may take one of several forms—triggers can be based on input channel values, external events, or programmatically defined events. Likewise, the end of an acquisition (also referred to as the "stop event") may be based on similar criteria.

Acquisition Frequency

The rate at which an acquisition takes place, measured in terms of frequency (Hz).

Acquisition Period

The rate at which an acquisition takes place, measured in terms of period (nanoseconds).

Acquisition Rate

The rate (in frequency or period) at which channel scans are to be taken, if using an internal clock source for the acquisition.

ADC acquisition

See Acquisition.

Analog

A signal of varying voltage or current that communicates data (compare with **Digital**).

API (Application Program Interface)

The interface program within the Daq system's driver that includes function calls specific to Daq hardware and can be used with user-written programs (several languages supported)

Arm

An action that enables a device to detect the trigger/start event specified.

Array

A collection of quantities [of the same data type] that are located in contiguous memory.

Asynchronous

Describes an event or action that is not temporally related to other events or actions. Normally, this describes an event or action that uses no synchronization method (such as an external or internal clock) to coordinate the event or action with other events or actions.

BCD (Binary Coded Decimal)

Refers to a data format where each byte represents a digit from 0 to 9. This is used mostly in reference to the counter mode selection for the 9513 chip. If used, 4 bytes are available, each byte representing a digit between 0 and 9 multiplied by subsequent powers of 10, from 0 to 3. Thus, the range for this number would be from 0 to 9,999 (dec).

Bit Mask

A collection of bits (usually 8 to 32-bits long) that is used to configure devices, channels or operations. A bit mask can also represents the state of certain operations, and events detected by the device. In a bit mask, each bit has special meaning that can be interpreted using the bit mask enumerations located in each specific programming language's API header files.

BOOL

A 32-bit Boolean (4 bytes) quantity that can take on either true ($\neq 0$) or false (= 0) values. This parameter type should be *passed by value* according to the dictates of the programming language used.

Boolean

A value that indicates a binary state of either true (see **true**) or false (see **false**).

Buffer (circular)

A buffer that will continue the reading or writing operation upon reaching the end of the buffer by starting again at the beginning of the buffer. This style of buffer is normally useful when there is not enough memory available to hold the entire acquisition input or waveform/pattern output data.

Buffer (linear)

A buffer that will terminate the reading or writing operation upon reaching the end of the buffer. Once the end of the buffer has been reached, no more data may be read from or written to the buffer. This style of buffer is normally useful when there is enough memory available to hold the entire acquisition input or waveform/pattern output data.

Buffer Position

The current position of the read or write operation of the buffer. If the buffer is being used to hold acquisition input data, then this position refers to the write (or head) position within the buffer at which the driver will store the next available data block. If the buffer is being used to buffer waveform/pattern output data, then this position refers to the read (or tail) position within the buffer from which the driver will retrieve the next available data block.

Channel

In reference to Daq products, a channel refers to a single *input*, or *output* entity. In a broader sense, an *input channel* is a signal path between the transducer at the point of measurement and the data acquisition system. A channel can go through various stages (buffers, multiplexers, or signal conditioning amplifiers and filters). Input channels are periodically sampled for readings. An *output channel* from a device can be digital or analog. Outputs can vary (as dictated by a program) in response to an input channel signal.

Channel Scan Configuration

See Channel Scan Group.

Channel Scan Group

A list of input channel configurations that fully define each individual channel's configuration for a particular data acquisition operation.

CJC (Cold Junction Compensation) Channel

A Cold Junction Compensation channel is used to correct Cold Junction offset during temperature correction when using thermocouple channels.

CTR (Counter) channel

A16-bit or cascaded 32-bit counter input channel on a device.

Command

A DaqX API command. Commands are accessible through the DaqX API support files.

Comparator

A device that can compare an input value to a specified programmed value. Often used in reference to 9513 counter operations.

D/A

A digital-to-analog converter. D/A's convert digital values (binary bits) into analog signals, manifested as a voltage output. The voltage level generated depends upon the voltage range of D/A converter, the resolution of the D/A converter, and the digital value passed to the D/A converter. Most D/A devices have resolution of 12 or 16 bits.

D/A Data Representation

At times, the presentation of digital values may differ according to the device, or the current mode of the device. For instance, a 12-bit digital quantity may be normalized to a 16-bit digital quantity ranging from 0 to 65,535, where only the 12 most significant bits are passed to the D/A. Also, a digital value may be signed if the device has been placed into a signed data format mode. If this is the case, then the voltage generated may correspond to a signed digital integer value ranging from -32,768 to +32,767 rather than 0 to 65,535.

D/A Resolution

With 12-bit D/A's, the digital value passed to the D/A can range from 0 to 4,095 where each bit in the digital value is equal to the D/A's voltage range divided by 4,095. With 16-bit D/A's, the digital values passed to the D/A can range from 0 to 65,535 where each bit in the digital value is equal to D/A's voltage range divided by 65,536.

DAC (D/A Converter) Channel

A channel that corresponds to a D/A on the device or expansion module.

Daq*

Any hardware device supported by the DaqX API. These devices include: DaqBooks, DaqBoards (ISA-type), Daq PC Cards, TempBooks, WaveBooks, DaqBoard/2000 Series boards, and cPCI DaqBoard/2000 Series boards.

Data type

The format of the parameters being passed into the API function/command.

Device

Specifies main unit devices, such as DaqBooks, DaqBoards, WaveBooks, TempBooks and Daq PC Cards.

Differential Mode (DE)

Differential mode measures a voltage between 2 signal lines for a single channel (compare with **Single-Ended Mode**).

Digital

A digital signal is one of discrete value, in contrast to a varying signal. Combinations of binary digits (0s and 1s) represent digital data.

DIO channel

A digital input or output channel.

Disarm

An action that disables the ability of the device to detect the trigger/start event specified. If the trigger/event has already occurred, the disarm action will stop the current operation.

DOUBLE

A 64-bit double precision (8 bytes) floating point number. This parameter type should be *passed by value* according to the dictates of the programming language used.

DWORD

A 32-bit unsigned integer (4 bytes) quantity that can range from 0 to 4,294,967,295. This parameter type should be *passed by value* according to the dictates of the programming language used.

External clock

The external clock is a device that uses pulses to drive synchronized input or output operations. The pulses originate in a foreign device, such as a machine, to which the external clock is connected.

Falling/Negative edge

Describes an event in which an input signal has exceeded or reached a particular level with a negative slope. This normally refers to a trigger or start event, or the manner in which a counter detects an event that should be counted.

False

The "false" value of a Boolean data type (= 0). Also See **True** and **Boolean**.

Flag

See Bit Mask.

FIFO (First In, First Out)

A mechanism for buffering input or output data on the device. This mechanism alleviates possible loss of data when transmitting clocked or synchronous data due to inherent system latencies in either the PC or controlling application.

FLOAT

A 32-bit single precision (4 bytes) floating point number. This parameter type should be *passed by value* according to the dictates of the programming language used.

Frequency Output (fout)

The output frequency programmed for a particular timer output channel. The frequency represents the rate at which the timer generates an output pulse.

Function

Normally, this refers to a DaqX API command. The command or function is accessible through the DaqX API support files.

Gain

The degree to which an input signal is amplified (or attenuated) to allow greater accuracy and resolution; can be expressed as \times n (where n is some integer), or ±dB. In terms of programming, most device channels can have their gain value programmed. Gain codes are provided in the API for each device gain applicable.

Handle

An integer that represents the device when the device is being accessed, after the device session has been opened. The handle to the device may be obtained via the daqOpen command.

Hardware Trigger

A trigger event that is detected on the device. Usually, these triggers take the form of an analog level or TTL level signal. These types of triggers normally result in lower trigger detection latencies, but are not as flexible as software trigger events.

Hold Register

Represents the hold register of the 9513.

Input Sample

The data for a *single* input channel that is part of a scanned channel acquisition.

Internal clock

The internal clock resides in the acquisition device and can be set (programmed) through software. The pulse from the internal clock is used to drive synchronized input or output operations.

Linearization

Some transducers produce a voltage in linear proportion to the condition measured. Other transducers (e.g., thermocouples) have a nonlinear response. Converting nonlinear signals into accurate readings requires software to calibrate several points in the range used, and then interpolate values between these points.

Load Register

Represents the load register of the 9513.

LONG

A 32-bit signed integer (4 bytes) quantity that can range from -2,147,483,648 to +2,147,483,647. This parameter type should be *passed by value* according to the dictates of the programming language used.

LPSTR

A pointer to a character string. This parameter type should be *passed by reference* according to the dictates of the programming language used. This parameter is normally a pointer to a device name or other ASCII string value.

Multiplexer (MUX)

A device that collects signals from several inputs and outputs them on a single channel.

Parameter

An element of the function, or of the command prototype, that is passed into the function.

PBOOL

A pointer to a 32-bit Boolean (4 bytes) quantity or an array of 32-bit Boolean quantities that take on false (= 0) or true($\neq 0$) values. This parameter type should be *passed by reference* according to the dictates of the programming language used.

PDOUBLE

A pointer to a 64-bit double precision (8 bytes) floating point number or an array of 64-bit double precision floating point numbers. This parameter type should be *passed by reference* according to the dictates of the programming language used.

PDWORD

A pointer to a 32-bit unsigned integer (4 bytes) or an array of 32-bit unsigned integer quantities that can range from 0 to 4,294,967,295. This parameter type should be *passed by reference* according to the dictates of the programming language used.

PFLOAT

A pointer to a 32-bit single precision (4 bytes) floating point number or an array of 32-bit single-precision floating point numbers. This parameter type should be *passed by reference* according to the dictates of the programming language used.

PLONG

A pointer to a 32-bit signed integer (4 bytes) or an array of 32-bit signed integer quantities that range from: -2,147,483,648 to 2,147,483,647. This parameter type should be *passed by reference* according to the dictates of the programming language used.

Pointer

The address of the value [or variable quantity] in memory, rather than the actual value or variable itself.

Post-trigger

The data [or state of an acquisition] after the occurrence of the trigger event. If referencing data, the post-trigger data was the data collected after or during the occurrence of the trigger event. If referencing the acquisition state, then the device has been triggered.

Pre-trigger

The data or state of an acquisition before the occurrence of the trigger event. If referencing data, the pre-trigger data was the data collected before the trigger event occurred. If referencing the acquisition state, then the device has currently not been triggered.

PSHORT

A pointer to a 16-bit signed integer (2 bytes) or array of 16-bit signed integer quantities, ranging from -32,768 to +32,768. This parameter type should be *passed by reference* according to the dictates of the programming language used.

PWORD

A pointer to a 16-bit unsigned integer (2 bytes) or array of 16-bit unsigned integer quantities, ranging from 0 to 65,535. This parameter type should be *passed by reference* according to the dictates of the programming language used.

Rising/Positive Edge

An event in which an input signal has reached [or exceeded] a particular level with a positive slope. This normally refers to a trigger or start event, or the manner in which a counter detects an event that should be counted.

RTD (Resistance Temperature Detector)

An RTD is a 3 or 4 wire transducer that uses resistance to produce 3 voltage inputs that can then be converted to a temperature, using known transfer functions in software. Both 3 and 4 wire configurations may be used. For programming, this term generally refers to a channel (using a DBK9) that has an RTD connected to it.

RTD (Resistance Temperature Detector) channel

Describes an RTD channel on a DBK9 temperature expansion module.

Sample

The value of a signal on an input or output channel at an instant in time.

Scan

Either the channels that are configured for acquisition (see **Channel Scan Group**), or the data retrieved during the acquisition for a single channel scan group.

Sequencer

A programmable device that manages input channels and channel-specific settings for devices that multiplex their input channels (MUX).

SHORT

A 16-bit signed integer (2 bytes) quantity that can range from -32,768 to +32,768. This parameter type should be *passed by value* according to the dictates of the programming language used.

Simultaneous Sample and Hold (SSH)

An operation that gathers samples from multiple channels at the same instant and holds these values until all are sequentially converted to digital values.

Single-Ended Mode (SE)

The single-ended mode measures a voltage between a signal line and a common reference that may be shared with other channels (compare with **Differential Mode**).

Software Trigger

A trigger event that is detected in the DaqX driver-software. These types of triggers normally result in higher trigger detection latencies but are much more flexible than hardware trigger events.

Stop Event

An event that terminates the acquisition of post-trigger data. This event, when satisfied, will cause the device to stop collecting post-trigger data.

T/C (Thermocouple)

A thermocouple is a transducer that produces a voltage relative to temperature at the junction of two dissimilar metals. Various types of thermocouples are available, each having characteristics particular to certain temperature ranges. For programming, this term generally refers to a channel that has a thermocouple connected to it.

T/C (Thermocouple) Channel

A thermocouple channel on a temperature measurement module or temperature expansion card.

Transistor-Transistor Logic (TTL)

Transistor-Transistor Logic (TTL) is a circuit in which a multiple-emitter transistor has replaced the multiple diode cluster (of the diode-transistor logic circuit); typically used to communicate logic signals at 5 V.

Trigger/Start Event

An event that initiates the acquisition of post-trigger data. This event, when satisfied, will cause the device to begin to collect post-trigger data.

Unipolar

A range of analog signals that is always zero or positive (e.g., 0 to 10 V). Evaluating a signal in the right range (unipolar or bipolar) allows greater resolution by using the full-range of the corresponding digital value. Also see **bipolar**.

Update Block

The data for *all* output channels that are part of a waveform/pattern output operation.

Update Clock

A pulse from an internal or external source that causes all waveform/pattern output channels to be updated synchronously.

Update Rate/Frequency

The rate at which update blocks should be presented to the outputs when using an internal clock source for the waveform/pattern output operation.

Update Sample

The data for just one output channel that is part of a waveform/pattern output operation.

Waveform/pattern output

A clocked, synchronous output operation [from PC memory or disk file] to one or more valid DAC or Digital Output channels. D/A and digital output data are output synchronously from the device's built-in output FIFO, which is fed from PC memory or disk file. Output updates are presented synchronously to each of the output ports based upon an external or internal clock pulse.

WORD

A 16-bit unsigned integer (2 bytes) quantity that can range from 0 to 65,535. This parameter type should be *passed* by value according to the dictates of the programming language used.

